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Abstract 

Motor learning is a precious capacity that humans, from toddlers to athletes and 

concert pianists, rely on to move with coordination and grace. The neural circuit in the 

cerebellum that helps us learn new movements and adjust our performance of familiar reflexes 

is remarkable for its quasi-crystalline architecture, which has been conserved at the cellular 

level across vertebrate species. This thesis develops and applies tools based on biophysical 

and computational modeling of neural circuits, as well as analysis of data sets from optical 

microscopy experiments, to study mechanisms of motor learning in the cerebellum. In the first 

part of the thesis, we use theoretical methods, including electrical compartmental modeling of 

single cells and a statistical theory of learning in networks, to explore hypotheses concerning 

temporal aspects of learned movements. We propose that the geometric structure of the 

cerebellar cortex may be useful for improving the neural representation of time. We go on to 

use a “lock and key” theory to explain a longstanding observation regarding the required 

causal temporal relationship among sensory stimuli for effective motor training. Our theory 

relates this timing aspect of motor learning to a biophysical mechanism, rebound 

conductances, present in the neurons of the deep cerebellar nuclei. 

In the second half of the thesis we develop and apply computational and statistical 

analysis procedures for analyzing experimental data sets from optical imaging experiments to 

test hypotheses regarding motor learning in the cerebellum. We present tools that can extract 

intracellular physiological signals, including neuronal spike trains and glial calcium transients, 

from noisy and high-dimensional imaging data sets recorded in living subjects. Using a novel 

miniaturized microscope, we measured intracellular signals as well as blood flow in freely 

moving mice during rest and activity. To examine intracellular signals in finer detail, we 

examined data recorded by two-photon imaging in head-fixed mice free to run on an exercise 

wheel. Using this technique, we discovered three forms of dynamic activation in networks of 

cerebellar Bergmann glia, one of which is associated with the onset of locomotor activity.  

High-dimensional optical imaging experiments require new computational approaches 

to data analysis. We developed automated procedures, including spatio-temporal independent 
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component analysis, to identify the locations and extract the temporal dynamics of individual 

cells in our movie data sets. Our procedures solve the cell sorting problem that is analogous to 

the challenge of spike sorting in extracellular electrophysiology. Cell sorting of calcium 

imaging data revealed patterns of correlated complex spiking in groups of Purkinje cell 

dendrites. Using in vivo optical microscopy we showed that microzones of correlated complex 

spiking are stable over time and between resting and actively moving behavioral states. 

Optical imaging in combination with statistical and computational approaches to data analysis 

may help in coming years to answer longstanding questions concerning the cellular and 

network mechanisms of motor learning in the cerebellum. 
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THE BRAIN is wider than the sky, 
  For, put them side by side, 
The one the other will include 
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The brain is deeper than the sea, 
  For, hold them, blue to blue,  
The one the other will absorb,  
  As sponges, buckets do.  
   
The brain is just the weight of God,  
  For, heft them, pound for pound,      
And they will differ, if they do,  
  As syllable from sound. [2] 
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Introduction 

This thesis presents the stories of a series of investigations in which I and my mentors 

and collaborators studied the neural mechanisms of motor learning. Each of the chapters 

presents a different technical approach, ranging from biophysical modeling of individual nerve 

cells through analysis of large-scale optical imaging data sets, to address a basic scientific 

puzzle: how do organisms use the brain’s capacity for learning to achieve fine control of their 

movements? This broad question fascinated me in particular because behavioral, anatomical 

and physiological research on a specific brain system – the cerebellum – have come together 

in recent years to provide what may be a critical mass of empirical data for understanding an 

important piece of the puzzle. By studying the mechanisms by which neurons and glial cells in 

the cerebellum, or “little brain,” respond to inputs and generate output on their own, as well as 

acting together in circuits, I hope it will soon be possible to give a detailed account of the 

familiar experience of learning a new motor skill. Such an understanding would be practically 

useful for treating disorders of movement and for informing the design of artificial systems for 

controlling movement. It would also be an important step on the road to comprehending the 

function of brain circuits in learning and behavior in general. 

The structure of the cerebellum is a remarkable example of intricate but repeating 

order in the brain. The quasi-crystalline geometry of the handful of neuron and glial cell types 

in the cerebellum was described in detail over 100 years ago by Ramon y Cajal [3] and 

continues to inspire beautiful anatomical studies [4]. Although the circuit diagram of the 

cerebellum can be described fairly completely in a succinct page of text (see circuit diagram, 

Chapter 1 Figure 1), the network is nevertheless vast: it contains more than half of all the 

neurons in the brain. The repetition of the same arrangement of cell types, with their axons 

and dendrites ordered in planes aligned with a local Cartesian coordinate system, suggests that 

the geometry of the cerebellum in some way serves its function and helps it to coordinate 

movement [5-7]. This same structure, and circuits with similar architecture in other brain 

regions, is remarkably conserved among vertebrate species, from fish to primates, and thus 

seems to be adaptable for a wide range of motor control tasks [8]. 
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This thesis is organized in two halves treating, respectively, theoretical models and 

experimental tools. In the first two chapters, I use analytic theory and computational 

simulations to explain aspects of the timing of cerebellum dependent behaviors. Movement is 

a dynamical process, and proper coordination of movement requires representing and 

processing temporal information effectively. Experiments have shown the cerebellum to be 

necessary and sufficient for generating well-timed motor output in a specific experimentally 

controllable behavior known as delay eyeblink conditioning [9]. In this paradigm of motor 

learning, repeated pairing of a conditioned stimulus, such as a tone, with an unconditioned 

stimulus, such as a puff of air to the eye, results in a learned reflexive blink in response to the 

conditioned stimulus alone. Early theories of the function of the cerebellum by Marr, Albus, 

and Ito sought to explain the learned association of sensory inputs with appropriate outputs 

[10-12]. However, the widely used theoretical framework developed by these pioneers does 

not explain key features of the timing of behavior in eyeblink conditioning. 

Behavioral studies of eyeblink conditioning show that time of peak eyelid closure 

following tone onset during a conditioned blink coincides with the delay between conditioned 

and unconditioned stimuli used during training [13]. Chapter 1 asks how the geometric 

organization of cerebellar cortex might create a distributed representation of time that could be 

used for generating temporally specific learned movements. Although distributed 

representations of temporal information have been discussed widely in recent theoretical [14, 

15], modeling [16] and experimental studies [17-19], we take a novel approach by evaluating 

the neural representation of time in terms of its usefulness as a resource for statistical 

estimation. We apply this perspective to a simplified model of the recurrent neural network 

that receives most of the sensory input to the cerebellum and distributes it sparsely across the 

vast population of granule cells. Our results suggest a function for the anisotropic organization 

of the cerebellar cortex in creating cellular dynamics that are more appropriate as a 

representation of time than those created by alternative anatomical structures. 

A second important timing aspect of cerebellum dependent eyeblink conditioning 

concerns the requirement for a causal relationship between conditioning stimuli. Training is 

apparently effective only in case the conditioned stimulus precedes the unconditioned stimulus 

by a sufficient (> 100 ms) interval [20, 21]. Training with conditioned and unconditioned 

stimuli that coincide in time, or with the reverse (acausal) temporal order, results in no 
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expression of conditioned blinks. Chapter 2 presents a theory, based on the biophysical 

properties of so-called rebound currents present in neurons of the deep cerebellar nuclei, that 

accounts for this timing requirement within a “lock and key” framework. The computational 

modeling and theoretical analysis in this chapter were the result of a close collaboration with 

Daniel Wetmore and Mark Schnitzer, and our paper was published the Journal of 

Neurophysiology [22]. 

The second half of the thesis moves from the realm of theoretical modeling of 

cerebellar function to developing tools that could be used to test model predictions. 

Neuroscience has a long history of applying quantitative and statistical analysis tools to 

complex data sets. Interestingly, some of the tools that have been used for the analysis of 

multi-electrode recordings and behavioral data sets, and more recently in the growing field of 

systems-level functional imaging (fMRI and PET), overlap with machine learning and 

statistical concepts that have been proposed as models of information processing in neural 

circuits. There is thus a degree of continuity between the tasks of modeling brain activity, and 

characterizing it by experimental means. In the three experimental projects presented here, we 

addressed the new challenges that arise in analyzing data sets recorded by optical microscopy 

as compared with more established techniques of neurophysiology. 

In collaboration with my experimentalist colleagues, I focused on the novel challenges 

of analyzing data sets recorded by optical microscopy in live animals. Chapter 3 presents a 

novel head-mounted miniature microscope that can be carried by a mouse while moving 

freely; the work in this chapter appeared in [23]. Our microscope, which was invented by a 

team in Mark Schnitzer’s laboratory lead by Benjie Flusberg and Erick Cocker, achieved the 

remarkable feat of recording the activity of neurons as well as the flow of individual red blood 

cells using a featherweight (1.1 g) microscope. To permit subjects to turn around during the 

experiment, the microscope incorporates a commutator that allows the fiber bundle carrying 

optical information to rotate with respect to the camera.  

The flexibility of the miniaturized microscope created an analysis challenge in that 

movie data had to be computationally re-aligned to a reference frame fixed in the “mouse 

coordinate system” before extracting the cellular fluorescence signals. This challenge is 

analogous to a problem faced as a matter of course by our own visual systems while gazing at 

a fixed scene. The ongoing saccadic movement of the eyes leads to a constantly shifting gaze 
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direction, and our brains combine the information obtained from each of these perspectives to 

produce the perception of a static world [24]. In analyzing the data from the miniaturized 

microscope we solved this challenge by a correlation-based image registration algorithm. The 

successful realignment of rotating movie data sets allowed us to glimpse increases in the 

complex spike activity of cerebellar Purkinje cells that were associated with locomotion. We 

also found evidence of increased correlation among complex spike trains during movement. 

These phenomena had previously been studied only by electrophysiology [25], which could 

not reveal the pattern of correlations within complete local networks of Purkinje neurons. 

Our experience with the miniaturized microscope showed that Ca2+-imaging could 

provide a new window on the modulation of complex spiking during locomotion. However, 

the relatively coarse spatial resolution (~2.8-3.9 µm in the lateral dimensions) of epi-

fluorescence imaging through the fiberscope, along with the artifacts due to movement that 

remained even after our best efforts at data processing, limited the accuracy with which we 

could study complex spiking by this technique. To overcome these limitations, we developed 

a different imaging modality and created a novel method of data analysis to study the cellular 

correlates of locomotion with greater precision. Our experimental strategy, which was devised 

and implemented by Axel Nimmerjahn, revived a technique first developed for studies of 

insect behavior [26, 27]. We adapted the concept of an animal atop a movable ball to allow 

two-photon imaging in head-restrained but freely running mice positioned on an exercise 

wheel [28, 29]. The wheel allowed the mouse to run at will, and measurement of the wheel’s 

rotation provided a temporally precise readout of locomotor behavior that we could correlate 

with physiological data. With this experimental approach we could record the activity in both 

neurons and glial cells during locomotion. 

Traditional recording techniques report electrical activity in brain cells, and have thus 

led neuroscientists to neglect the study of cells lacking electrical excitability. This neglect is 

particularly acute in the case of glial cells, traditionally considered exclusively as supportive 

of information processing by their neuronal neighbors. The advent of Ca2+-imaging techniques 

in vitro [30] and in vivo [31-33] has revealed active dynamical activity in astrocytes evolving 

over the seconds time scale. Such activity may be spatially organized and responsive to 

sensory input in a manner very much analogous to neuronal information processing [28, 34]. 

In Chapter 4, we set out to apply our head-fixed two-photon microscopy technique to study 
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the Ca2+ activity in Bergmann glia, the astrocytes of the cerebellar cortex, in awake and 

behaving mice. 

Our studies revealed a rich variety of dynamical activity over a range of spatial and 

temporal scales in Bergmann glial processes. We classified the transient increases in Ca2+ we 

observed in three categories, one of which was associated with the onset of running and 

involved activation in the processes of hundreds of glial cells over macroscopic (at least ~500 

 µm in extent) regions. This form of glial excitation1 mimics in its initial timecourse the 

dynamics of blood flow increases [36], suggesting a possible link between intracellular Ca2+ 

transients in Bergmann glia and hemodynamic correlates of locomotion. The other two forms 

of Ca2+ activation we observed were not obviously related to locomotor behavior and occurred 

at very low spontaneous rates in both isoflurane anesthetized and awake subjects. The use of 

Ca2+-imaging in behaving rodents should allow in the coming years more detailed 

investigations of the mechanisms and functional roles of these forms of cellular activation in 

the cerebellum. 

Besides signatures of glial activity, our data sets recorded by two-photon microscopy 

in head-fixed animals also contained fluorescence transients arising from up to 100 dendrites 

of individual Purkinje cells. Such data sets offer a unique opportunity to simultaneously 

observe the intracellular dynamics within a nearly complete local network. However, 

extracting physiological signals from raw movie data sets poses a considerable challenge for 

data analysis due to the need to find the locations of cells within a high-dimensional space of 

movie pixels and subsequently estimate the times of events, such as action potentials, based on 

observations of Ca2+ dependent fluorescence. Whereas multi-electrode recording techniques 

[37] motivated the development and characterization of automated and semi-automated 

computational tools for solving the “spike sorting” problem [38], the analogous challenges for 

optical microscopy data are still immature. Recent studies introduced heuristic and semi-

                                                        
1 We dubbed the macroscopic form of excitation “flares”; spontaneous transients in individual 

processes are called “sparkles,” and medium-range, stereotyped events involving tens of 
cells over a range of ~50  µm are called “bursts.” We arrived at these monikers after a 
process of deliberation which generated several other worthy candidates. A particularly 
fitting alternate name for the “flares” is “glister,” a noun meaning “a glistering; a bright 
light, brilliance, luster” [35]. This word derives from an obsolete English word, “glise,” 
meaning “to glitter, shine.” Its similarity to “glia” is entirely fortuitous. 



 

 

 
 

6 

automated approaches for extracting and analyzing neuronal activity signals in Ca2+-imaging 

data sets [39, 40]. However, there remains a need for automated procedures based on the 

particular statistical characteristics of physiological signals recorded by optical microscopy for 

solving the “cell sorting” problem in large scale imaging data sets. 

Chapter 5 introduces an approach to cell sorting based on independent component 

analysis (ICA) [41, 42]. We used a spatio-temporal version of ICA to take advantage of all 

available statistical information in movie data sets [43]. We created simulated fluorescence 

imaging data with signal and noise characteristics mimicking our cerebellar data sets. Using 

these simulations, we compared the performance of ICA based cell sorting with a more 

conventional analysis based on regions of interest (ROI). Our studies characterized the 

limitations and capabilities of our automated analysis procedures, including the sensitivity to 

noise and cross-talk among signals from neighboring cells. Automated analysis allowed us to 

efficiently extract high fidelity estimates of the true cellular signals in artificial data sets with 

far larger fields of view than could be analyzed by ROI analysis. We further tested cell sorting 

by using it to analyze optical imaging data recorded in the cerebellum of head-fixed, awake 

behaving mice. 

Our results using automated cell sorting provided a novel view of the organization of 

“microzones” in the olivo-cerebellar system [25, 44, 45]. Electrophysiological recordings over 

the past three decades revealed that Purkinje cell complex spikes are weakly synchronized 

among pairs of cells within rostro-caudal strips, or microzones. One hypothesis proposed that 

this organization is modifiable during motor behavior, with individual cells shifting in their 

associations depending on task demands [46]. A different research program, making use of 

anatomical tracing and receptive field mapping studies, proposed a hard-wired, static 

organization of the cerebellar microzones that could be used to flexibly control different body 

regions through the activity of groups of Purkinje cells [47]. Applying automated cell sorting 

to our Ca2+-imaging data sets revealed no evidence in support of the “dynamic microzones” 

hypothesis. Instead, we found that groups of correlated Purkinje cells remain structurally fixed 

during periods of rest and active locomotion. By contrast, both the rate of complex spikes and 

the degree of correlation were modulated by behavior. Our observation that correlations 

increase among Purkinje cell complex spike trains during active behavior suggests a distinct 

information processing strategy in cerebellum as compared with neocortical circuits, where 
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the opposite pattern of modulation of correlations was observed [48]. 

The biophysical modeling and optical imaging tools and studies described in this 

thesis represent an attempt to leverage recent advances in the technology of experimental 

neuroscience to understand the mechanisms of cerebellar motor learning through 

computational and theoretical techniques. I hope that the hypotheses we put forward will be 

proven wrong, and the sooner the better, as such proof will surely provide the insight needed 

to paint a more accurate picture of the workings of the cerebellar cortex. I look forward with 

excitement to witnessing and, I hope, contributing to these insights in the coming years 

through the exploitation of remarkable advances in the technology for seeing biological 

activity at the cellular level.   
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Chapter 1: Cerebellar network geometry can improve the 

representation of time for motor learning 

ABSTRACT 

Coordinated control of movement requires properly timed motor control signals. 

In many cases, such timing must be ensured by an internal clock within the 

central nervous system [49-51]. Despite decades of work studying specific 

mechanisms and general principles for temporal processing in neural circuits [14, 

52-56], we still lack a framework that can explain the temporal precision of 

animal behavior in terms of specific patterns of connectivity. Here we study the 

mechanism by which well-timed motor control signals are generated in 

cerebellum-dependent classical eyeblink conditioning. By analyzing this form of 

motor learning in a statistical estimation framework, we derive a quantitative 

measure of the number of effective degrees of freedom for temporal processing 

by a neural network. The number of degrees of freedom is a statistical measure 

that reflects the richness of the network’s temporal dynamics, as well as the noise 

level and the dynamic range of synaptic plasticity. We simulate the dyn amics of 

a simple model of cerebellar granule and Golgi cells and show that the striking 

geometric organization of cerebellar cortex may improve the representation of 

time by increasing the number of degrees of freedom for temporal processing 

relative to an isotropic network. 

Classical conditioning of the eyelid reflex is a convenient experimental model of a 

learned motor reflex in which internally generated timing signals play a critical role. In this 

paradigm, subjects are trained with repeated presentations of a conditioned stimulus (CS), 

such as a tone or light, together with an unconditioned stimulus (US), such as an airpuff or 

electrical stimulation of the eyelid. After training with hundreds of such pairings, subjects 

learn to produce a blink conditioned response (CR) following presentation of the CS alone. 

When the relative time between the onset of the CS and delivery of the US is fixed during 

training, subjects learn to produce CRs that peak precisely at the time of the expected onset of 
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the US (Figure 1A,B) [13, 57, 58]. Despite its simplicity and the accumulation of empirical 

knowledge about this form of motor learning, a basic open question remains how properly 

timed CRs may be produced by neural mechanisms in the cerebellum. 

Experimental studies of classical eyeblink conditioning in rats and ferrets over the 

past three decades support the conclusion that neural circuits located within the cerebellum are 

necessary and sufficient for the timing of CRs [59]. Decerebrate ferrets can learn well-timed 

CRs even when the tone or light CS is replaced with direct electrical stimulation of the 

afferents to the cerebellum [60]. In these experiments the CS was a train of 15 electrical 

impulses delivered at 50 Hz and lasting 300 ms. Because each of the 15 pulses was identical, 

the electrical input to the cerebellum carried no information about the time since the onset of 

the CS. Furthermore, changes in the activity of sensory afferents responding to tone stimuli 

apparently also lack any fine temporal structure for guiding the time of the CR [61]. Whereas 

inputs to the cerebellum lack information about the time since the onset of the CS, cerebellar 

output signals carried by Purkinje cell axons (Figure 1C) reflect the precise timing of the CR 

[62]. The experimental evidence thus points to a mechanism within the cerebellar cortex for 

representing the time since the onset of stimuli in a manner that can be used to produce well-

timed motor output signals. Such a mechanism likely involves the recurrent network of 

granule and Golgi cells which process sensory input to the cerebellum (Figure 1C) [16, 51]. 

We used statistical learning theory to describe the requirements for a neural 

mechanism for temporal processing in cerebellar motor learning. In the first part of this 

chapter, we derive the number of “degrees of freedom,” d , carried by a particular neural 

representation. d  depends on both the richness of neural activity patterns, as well as the 

variability of neural activity and constraints on the learning rule implemented by mechanisms 

such as synaptic plasticity. We show that d  determines how well the representation can be 

used for motor learning. We then apply this measure to activity traces from a simulation 

designed to capture basic aspects of the network of cerebellar granule and Golgi cells. We find 

that the geometric organization of the cerebellum may enhance its ability to represent time and 

thus improve motor learning. 

RESULTS 

Motor learning is a statistical estimation problem 

To produce well-timed motor output, as observed in cerebellar Purkinje cells [62], 
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neural circuits must accurately represent time delays spanning some range. An analog clock 

provides a representation of time that can be read by an observer to infer the current time with 

a specific precision. If the clock has a minute hand, an observer could use the clock to time a 

boiling egg. If a seconds hand is also available, the clock could be used to pull a shot of 

espresso (ideally for 20-25 s). The precision with which a clock or a neural circuit represents 

time determines its range of functional uses. Although it might be possible to use a clock with 

only a minutes hand in a timing task a few seconds, the accuracy of performance will be 

limited by the representation of time. 

We developed a statistical learning framework to describe the function of the 

cerebellar circuit in motor learning tasks such as eyeblink conditioning. The goal of motor 

learning is to produce a specific time-varying motor control signal, P(t) . The output of the 

cerebellum, carried by axons of Purkinje cells, should approximate the desired motor control 

signal. We thus denote the activity of Purkinje cells by P̂(t)  to emphasize their function as 

statistical estimators of the correct output at each point in time. 

The cerebellum performs this estimation by processing information about sensory 

input arriving via mossy fiber afferents (Figure 1C). After training, the network implements a 

mapping from mossy fiber (sensory) inputs to Purkinje cell (motor) outputs. This mapping 

comprises two transformations. In the first stage, the network of granule and Golgi cells 

recodes sensory afferent signals into a set of activity patterns distributed across the population 

of granule cells, {gi (t)}  (Figure 2A). Because of the enormous number of granule cells, this 

stage of processing effectively expands the sensory information into a representation in terms 

of a high-dimensional basis set. Second, the output of thousands of granule cells converges at 

individual Purkinje cells (Figure 2B). Each granule cell parallel fiber makes a synaptic 

connection with a weight that can be adjusted during training and which determine the map 

from inputs to outputs. After training, Purkinje cells map their inputs to specific motor control 

signals (Figure 2C), which are then relayed out of the cerebellum. The aim of learning is to 

adjust this mapping so that it approximates the desired motor program: P̂(t) ! P(t) . 

Linear regression provides a simple statistical framework for analyzing the 

transformation of granule cell sensory information to Purkinje cell motor output. In fact, the 

cerebellum has often been described as performing a linear transformation of its inputs to 

produce appropriate output [63]. In the case of binary output, this is the computational 

paradigm of a perceptron [64-66]. The output motor control signal at time t is thus a linear 
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combination of the inputs to the Purkinje cell: 

P̂(t) = Jigi (t)
i

!  

Here, a Purkinje cell's activity, P̂(t) , depends on the instantaneous activity of all the pre-

synaptic granule cells, {gi (t)} , as well as the parallel fiber to Purkinje cell synaptic weights, 

{J
i
} . For simplicity, we will restrict our attention to the output of one Purkinje cell. Our 

model thus concerns the network of ~105 granule cells and ~100 Golgi cells which shape each 

Purkinje cell’s input. The goal of learning is to minimize the mean square error of the output 

control signal, 

![J
i
]= dt[P(t)" P̂(t)]2# .  

This error function defines a quadratic landscape for learning (Figure3B) [67]. The 

landscape is a function of the set of synaptic weights, {J
i
} , which number in the thousands 

for each Purkinje cell. We can describe the geometry of the error landscape in terms of the 

granule cell patterns of activity by using a discrete representation in which each signal is 

determined by its value at a set of time points, {t j} : Pj = P(t j )  and G ji = gi (t j ) . The error 

function is thus  ![J]=‖P"GJ‖
2
= (J " J

*
)
T
H(J " J

*
) , where we define the curvature matrix, 

H =G
T
G . Within this high-dimensional space, the landscape has a unique minimum at the 

optimal configuration of synaptic weights for a given desired motor output pattern: 

J
i

*
= [H

-1
G

T
P]

i
. The Purkinje cell's task is to find the error minimum by some suitable process 

of updating the synaptic weights (Figure 3A); for example, backpropagation provides a 

biologically plausible learning rule for descending the gradient of the error landscape [68]. 

The weights should be adjusted during training in response to sensory input in a manner 

consistent with biological processes, such as long-term plasticity [10, 69]. However, such 

processes may not be capable of achieving the error minimum, J
i
= J

i

* . 

A main reason the network may not be able to exactly reproduce the desired motor 

output is variability in the activity of granule cells from trial to trial. Although the responses of 

granule cells are remarkably reliable [70], there will inevitably be some fluctuations in their 

response to similar patterns of sensory input. This variability introduces a noise term in the 

error landscape: 

 !noise[J]=‖P" (G+#)J‖2= (J " J* )TH(J " J* )+$
noise

2 ‖J‖2   
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where !ij
=!

i
(t

j
)  is a stochastic term representing trial-to-trial fluctuations, and we assumed 

independent noise in each cell, !
ij

= 0  and !T!
ik

="
noise

2 #
ik

. The new term in the error 

function that is proportional to the noise variance penalizes large synaptic weights. The reason 

for this penalty is that using very large values for the J
i
 will amplify the fluctuations in 

granule cell activity on each trial and thus degrade the accuracy of Purkinje cell output. This 

noise-induced penalty balances the first term in the error function, which is minimized when 

J = J
* . These two terms are analogous to the bias and variance contributions to the statistical 

error in multi-dimensional regression [71]. 

The biological mechanisms of synaptic plasticity provide a second important 

motivation for introducing a penalty term in the error function. Without such a term, the 

synaptic weights may be required to vary over a broad range in order to change achieve the 

desired motor output pattern. However, plasticity processes such as long-term potentiation and 

depression can only vary the magnitude of synaptic weights over a limited dynamic range 

(Figure 4A). A quadratic penalty term in the error function like that introduced due to noise in 

the above equation is one way of solving the original optimization problem, min
{J

i
}
![J] , subject 

to a constraint on the synaptic weights: 1
N

J
i

2

i=1

N

! " J
max

. This constraint is imposed by adding a 

term,  ! syn

2 ‖J‖2 , to the error function, where !
syn

2  is a Lagrange multiplier and is 

monotonically related to the constraint, J
max

. This type of optimization is known as ridge 

regression, and it is one way of regularizing the original learning problem. Because of the 

formal similarity between the effects of noise and the constraint on the dynamic range of 

synaptic plasticity, we can lump these two effects together into a quadratic penalty term with 

total weight 1 /!2
=" noise

2
+" syn

2 . With this penalty, the optimal synaptic weight configuration 

is given by J*,ridge = (H+ Id /!
2
)
-1
G

T
P  (Figure 4A). 

The net effect of constraints on the synaptic weights is to prevent the network from 

exactly reproducing the desired motor output. However, the severity of this limitation depends 

on the statistics of granule cell activity, and in particular on correlations among the population 

of granule cells. For example, if all granule cells produced identical patterns of activity, motor 

output would necessarily be proportional to this pattern regardless of the configuration of 

synaptic weights. This would be the case in networks with line-attractor dynamics, in which 
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all network cells quickly relax to a one-dimensional subspace [72, 73]. Because of the 

enormous number of granule cells, even slight differences in their activity patterns may be 

exploited to accurately fit a wide range of motor output signals. However, constraints on the 

dynamic range of synaptic plasticity and granule cell noise compete with this goal. The 

residual error of the motor output, !*[";G]= ![J*,ridge ] , is determined both by the constraint, 

! , as well as the representation of temporal information in the granule cells, G . 

The geometric picture of the error landscape as a quadratic function of the synaptic 

weights provides a simple interpretation of the residual motor error (Figure 4A). The matrix, 

H , determined by the covariance of the granule cell activity traces, sets the curvature of the 

error landscape along each dimension of synaptic weight space [67]. Eigenvectors of H  with 

large eigenvalue correspond to dimensions with steeply curved error landscape, while small 

eigenvalues correspond to dimensions with shallow error curvature. Dimensions with very 

shallow curvature pose a challenge for learning because the synaptic weights must be varied 

over a large range to significantly reduce the error. By contrast, steeply curved dimensions 

may be easily optimized by small adjustments of the synaptic weights. A more detailed 

mathematical description of this geometric picture of the error is provided in Appendix A. 

The final accuracy of motor output after learning thus depends on the number of 

dimensions, d , of synaptic weight space for which the error landscape’s curvature is steeper 

than a cutoff, 1 /! . The cutoff is inversely related to the dynamic range of synaptic plasticity 

and directly related to the noise power. This concept can be quantified for ridge regression in 

terms of the granule cell activity patterns (Figure 4B):  

d = Tr[G(H+ Id /!
2
)
"1
G

T
]= 1 / [1+ (S

i
!)

"2
]

i=1

N

# . 

Here, S
i

2{ }  are the eigenvalues of H . d  corresponds to the number of effective “degrees of 

freedom” in statistical regression, and is a measure of the complexity of the range of motor 

output signals that can be learned given the representation of time in the granule cell network 

[74]. 

The steepness of the error landscape was related to the speed of learning in [67]. By 

contrast, we consider the effect of the error curvature on the limit of motor accuracy that can 

be achieved in the presence of noise and using limited synaptic plasticity. 
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Effect of network geometry on temporal processing 

A prominent feature of the cerebellar cortex is the regular, quasi-crystalline 

arrangement of the granule cell parallel fibers [7]. Parallel fibers extend several millimeters 

along the cerebellar folia, making contact with the perpendicularly oriented Purkinje cell 

dendritic arbors (Figure 5A). Unlike neocortical brain areas, the cerebellar cortex is strongly 

anisotropic, with distinct cellular structures aligned along each of the three local dimensions. 

We used computational simulations to test the effect of this geometric organization on the 

temporal dynamics of granule cells, and hence on their ability to represent time for motor 

learning. 

Our model includes recurrent synaptic connections between cerebellar granule and 

Golgi cells (Figure 5B). The length of parallel fibers, and the extent of Golgi cell dendritic 

arbors, together determined the range over which each granule cell could contact a Golgi cell 

[75]. Within this range, synaptic connections were chosen randomly. For comparison, we also 

created a network model with “isotropic” synaptic connections. In this network, granule cells 

contacted neighboring cells in each direction with equal likelihood. Cellular dynamics were 

simulated using a simple linear rate model [76] (see Appendix B for detailed methods). 

Although relatively simple in their architecture, both of the network models we studied 

incorporate important geometric constraints that have so far been neglected in the bulk of 

theoretical work on randomly connected, all-to-all neural networks [77-79]. 

A key feature of the synaptic weight matrix of the granule and Golgi cell network is 

that it is bipartite. That is, granule cells synapse on Golgi cells but not on other granule cells, 

and likewise Golgi cells do not synapse onto other Golgi cells. This structure greatly reduces 

the dimensionality of the dynamical activity induced in the network by the recurrent 

connections. In a bipartite network with N
Go

 Golgi cells and Ngr  granule cells, where 

 
Ngr ! NGo , the total number of dynamical modes corresponding to non-zero eigenvalues of 

the synaptic weight matrix is no more than N
Go

 (see Appendix B). Intuitively, each granule 

cell can only interact with other granule cells by first influencing the activity of a Golgi cell. 

Since each Golgi cell diverges in its synaptic connections onto hundreds of granule cells, each 

of these granule cells effectively experiences the same dynamic input. 

We examined the transient activity in granule cells following the onset of a stimulus, 

which induced an immediate increase in external input to the network. We designed the 

desired motor output signal to reflect the expected activity of a Purkinje cell involved in a 
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conditioned eyeblink response. Following training, such cells should exhibit a timed pause in 

spiking at the moment of the expected US [22]. Details about the simulation methods are 

given in Appendix B. 

If no constraint is imposed on the dynamic range of synaptic plasticity, both the 

geometric and the isotropic model networks are capable of learning to accurately generate 

well-timed motor output signals (Figure 6A). However, as noted above, this accuracy is 

bought at the expense of using large changes in synaptic weights to compensate for 

correlations in the granule cell activity traces. Such correlations would make it hard to learn 

accurate motor responses with a limited range of synaptic plasticity. In fact, we found that 

only the geometrically organized network could accurately learn the motor output using 

constrained synaptic weights (Figure 6B). To assess the general significance of this result, we 

varied the parameter, ! , controlling the dynamic range of plasticity over several orders of 

magnitude. The results showed that the geometric network achieved low residual motor error 

over a broad parameter range in which the isotropic network failed to learn accurate responses 

(Figure 6C). These results show that network geometry can have a profound effect on the 

representation of time for learning. 

To assess the impact of network connectivity in greater detail, we systematically 

varied the range of granule cell projections along ( L
x
) and across ( Ly ) the cerebellar folium. 

These two parameters defined a phase space for network geometry, with isotropic networks 

lying along the line Lx = Ly . For each value of (Lx ,Ly )  we created a model network and 

simulated its dynamics in response to a step change in input. The temporal pattern of activity 

in the network cells was then used to calculate the effective number of degrees of freedom, d  

(see above and Appendix A). Figure 7A shows the map of these simulation results as a 

function of the geometric parameters for a network with relatively weak synaptic connections. 

We found that as we increased the strength of all synapses by one (Figure 7B) or two (Figure 

7C) orders of magnitude, while keeping the geometric pattern of synaptic projections the 

same, the number of degrees of freedom increased correspondingly. However, when the 

synaptic weights were increased too much the network became unstable, with some of the 

normal modes growing exponentially over time (Figure 7C). 

We hypothesized that d  depends on the diversity of oscillations in granule cell 

activity. Such oscillations are created by recurrent feedback, and thus depend on the geometry 

of the network. We thus examined the set of frequencies of the network normal modes for 
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different geometric configurations. Figure 7D shows the cumulative distribution of mode 

frequencies for two isotropic networks, as well as two anisotropic networks. The networks 

with isotropic connections had most of their oscillation frequencies distributed within a 

narrow range. By contrast, anisotropic networks had a broader range of oscillation frequencies 

and a more even distribution of those frequencies within that range. However, in the limit of a 

very anisotropic network (Ly = Lx / 8) , the normal mode frequencies broke into discrete 

groups (red curve in Figure 7D). This is because such a network is effectively one-

dimensional, with each beam of granule cells effectively disconnected from neighboring 

beams. The degeneracy of mode frequencies in such a network reduced the effective degrees 

of freedom compared with a slightly less anisotropic network (optimal network shown in 

green curve). 

CONCLUSION 

In this chapter we developed a theoretical framework for analyzing the representation 

of time by a distributed neural circuit. We focus on cerebellum dependent classical eyeblink 

conditioning as a prototype for timed motor learning tasks. We relate learning well timed 

motor output signals to a statistical estimation problem. The theory of ridge regression 

provides mathematical tools for analyzing the ability of a network to accurately generate timed 

output signals by adjusting synaptic weights. The limited dynamic range of synaptic plasticity 

provides a key constraint on learning. We show that the pattern of activity in the granule cells 

can be evaluated in terms of the number of “degrees of freedom,” which measures the 

complexity of motor output patterns that can be learned. 

We applied our theoretical framework to analyze simulations of a cerebellum-like 

network of granule and Golgi cells. By varying the relative spread of granule cell synaptic 

connections along each of the two dimensions of the cerebellar cortex, we evaluated the effect 

of geometry on motor learning. 

APPENDIX A: GEOMETRY OF THE ERROR LANDSCAPE 

In this appendix we calculate the residual motor error after training in a network with 

a constrained range of synaptic plasticity: 
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!res[";G]= P# P̂
2

= P#GJ
*,ridge

2

= P#G(H+ Id /"
2
)
#1
G

T
P

2
 

We can simplify this expression by performing singular value decomposition on the granule 

cell activity matrix: G =USV
T  where U,V  are orthogonal matrices and S  consists of a 

diagonal matrix concatenated with a matrix of zeros. Note that the eigenvalues decomposition 

of the curvature matrix is given by H =US
2
U

T , where S2  is a square, diagonal matrix 

containing the squares of the singular values of G . 

Rotating into the basis set of singular vectors, we have: 

 

!
res
[";G]= U(Id+S2"2

)
#1
U

T
P

2

= P
T
U Id+S

2"2$% &'
#2
U

T
P

=

!P
i

1+ (S
i
")2

$

%
(

&

'
)

i=1

N

*
2

,

 

where  !P =UT
P .  

From this expression we can see the significance of the number of degrees of freedom, 

d = Tr[G(H+ Id /!
2
)
"1
G

T
]= 1 / [1+ (S

i
!)

"2
]

i=1

N

# . Steeply curved dimensions are those for 

which 
 
S
i
!1 /! . Such dimensions do not contribute residual output error, since 

 
(1+ S

i

2
!
2
)
"2
!1 . On the other hand, dimensions with shallow curvature, 

 
S
i
!1 /! , do 

contribute to the final output error. The number of such shallow dimensions thus effectively 

sets the number of dimensions of synaptic weight space that can be optimized during learning.  

APPENDIX B: SIMULATION METHODS 

Synaptic weight matrix 

We created simplified models of the recurrent network of granule and Golgi cells to 

study the effect of network geometry. Each network included N
Gr

 granule cells and N
Go

 

Golgi cells. The average number of Golgi cells making a synapse on each granule cell was 2, 

and the average number of Golgi cells receiving synapses from each granule cell was 5 [17]. 

The corresponding number of granule cells receiving and making synapses on each Golgi cell 

was determined from these parameters together with the ratio of the populations of the two 
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cell types. The cells were assigned to evenly spaced locations on a square lattice. The 

distribution of synaptic weights was binary; that is, each pair of cells was either not connected 

(synaptic weight = 0), or else connected by an excitatory (synaptic weight W RO  for granule to 

Golgi synapses) or an inhibitory (weight WOR ) synapse. There were no granule-granule or 

Golgi-Golgi synapses. 

The connectivity of simulated networks was controlled by two parameters, L
x
 and 

L
y . The probability of a synaptic connection from a Golgi cell located at (xGo , yGo )  to a 

granule cell at (xGr , yGr )  was given by a Gaussian distribution: 

PGr!Go = AGrGo exp "(xGo " xGr )
2
/ 2Lx

2 " (yGo " yGr )
2
/ 2Ly

2#$ %&  

where the constant, A
GoGr

, was determined by the total number of synapses. The pattern of 

granule to Golgi synaptic weights was determined by an isotropic Gaussian distribution, 

PGo!Gr = AGoGr exp "((xGo " xGr )
2 " (yGo " yGr )

2
) / 2LxLy

#$ %& . We created synaptic weight matrices 

with these probability distributions using a binomial random number generator to choose 

whether each pair of cells was connected or not. 

For Figure 6, we created an isotropic network with similar connectivity to the 

geometric network described above by setting Lx
!
= L

y

!
= L

x
L
y .  

Simulated dynamics of the bipartite network 

The activity of the cells evolved according to a linear firing model: 

!
d

dt

v
Gr

v
Go

"

#

$
$

%

&

'
'
=

0 W
OR
S
OR

W
RO
S
RO

0

"

#
$
$

%

&
'
'

v
Gr

v
Go

"

#

$
$

%

&

'
'
+ I(t) . 

Here, SRO ,SOR  are matrices whose entries are 0 or 1, reflecting the presence or 

absence of a synaptic connection respectively and WOR
,W

RO  are scalar parameters setting the 

strength of inhibitory and excitatory synapses. I(t)  represents external input to the network. 

This input was provided to a randomly chosen subset of the network cells. At the start of a 

trial, the input was changed instantaneously to a new value reflecting the onset of the 

conditioned stimulus. 

Modes of oscillation in a bipartite network 

To determine the normal modes of the network dynamics (Figure 7D), we first created 
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a N
Go
!N

Go
 matrix describing the bi-synaptic connections from each Golgi cell to every other 

Golgi cell, via one or more granule cells. This matrix is given by: 

W
OO
S
OO

= (W
OR
W

RO
)S

OR
S
RO . 

Note that the dynamics of Golgi cells can be expressed in a closed form, independent of the 

granule cells: ! 2 d
2

dt
2
v
Go
=W

OO
S
OO
v
Go
+W

OR
S
OR
I
Gr
(t)+ !

d

dt
I
Go
(t) . The entries of the Golgi-

Golgi connection matrix, SOO , correspond to the number of granule cells which connect each 

pair of Golgi cells, and this matrix is thus almost perfectly symmetrical: the number of granule 

cells which receive input from Golgi cell i and project to cell j is roughly equal to the number 

that receive input from j and project to i. This symmetry implies that the dynamics of granule 

and Golgi cells can be decomposed in terms of simple normal modes. We found the set, !
i{ } , 

of N
Go

 eigenvalues of the bi-synaptic matrix WOO
S
OO . These eigenvalues are negative due to 

the symmetry of SOO  and the opposite signs of the two synaptic weight coefficients.  

The network oscillation frequencies governing the dynamics of both the granule and 

Golgi cells are given by !
i
= "#

i
. To see this, note that the N

Gr
!N

Gr
 granule-granule bi-

synaptic connection matrix, SRR = SROSOR , is closely related to the far smaller Golgi cell 

matrix. In fact, every eigenvector of SOO , for which SOOv
Go

i
= !

i
v
Go

i , corresponds to an 

eigenvector, v
Gr

i
= S

RO
v
Go

i , of the granule cell network: 

S
RR
v
Gr

i
= S

RR
(S

RO
v
Go

i
) = S

RO
(S

OR
S
RO
v
Go

i
) = !

i
(S

RO
v
Go

i
) = !

i
v
Gr

i . All the remaining eigenvectors of 

the granule cell network must have eigenvalues zero, and thus do not contribute to the 

dynamics. 

Error landscape curvature and degrees of freedom 

To compute the shape of the error landscape, we generated a set of simulated 

trajectories whose dynamics were determined by the network oscillation frequencies: 

v(t
j
) = Re[UIe

i!it j ] . 

Here I  is a random, complex valued vector determined by the difference between the 

initial condition and fixed point of the network dynamics. U  is an orthogonal matrix whose 

columns are the network normal mode eigenvectors. The error landscape curvature was then 

given by 
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Hik = vi (t j )vk (t j )
j

! . 

We computed the network degrees of freedom using H  together with a parameter, 

! , setting the dynamic range of synaptic plasticity: 

d = Tr[(H+!Id)
"1
H] . 

Simulated motor output 

To simulate the output of a Purkinje cell in a trained subject, we first defined the 

desired output trajectory, P(t) , to be a box-car function reflecting a pause in activity starting 

after a fixed interestimulus interval (Figure 6A,B). We then calculated the parallel fiber 

synaptic weights using ridge regression, J*,ridge = (H+ Id /!
2
)
-1
G

T
P . We used Matlab’s 

“backslash” operator to compute the matrix inverse. The residual error was defined as the 

mean square difference between the desired output and the learned estimate; see the Appendix 

A. 
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FIGURES 

 

Figure 1. Cerebellar circuit diagram and timed motor output in eyeblink conditioning. 

(A,B) Conditioned eyeblinks in trained rabbits peak around the time of the expected onset of 

the US [13]. Experiments using three different interstimulus intervals show the capacity for 

generating multiple well-timed motor response patterns in response to the same sensory input. 

(C) Schematic diagram of the connections among cerebellar cell types in our model, together 

with sensory inputs. Granule (Gr) cells receive sensory input and send parallel fibers (PFs) to 

Purkinje (Pkj) and Golgi (Go) cells, as well as basket and stellate cells (not shown). Go cells 

make recurrent, inhibitory synapses onto Gr cells. The Pkj cells convey the output of the 

cerebellar cortex and drive expression of motor behaviors. Additional input arrives via 

climbing fiber afferents onto Pkj cells (not shown) and plays an important role during 

learning. 
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Figure 2. A distributed representation of time in the population of Gr cells would allow 

properly time Pkj cell responses. 

(A) Sensory input (black trace) lead to irregular but reproducible temporal patterns in the 

activity of granule cells (red). 

(B,C) Different patterns of plasticity at parallel fiber-Purkinje cell synapses (B) lead to 

differently timed pauses in Purkinje cell activity (C, blue traces). 

 

Figure 3. Statistical learning theory describes the requirements for learning timed 

responses. 

(A) During learning, the weight of PF synapses on Pkj cells is adjusted to minimize motor 

error, defined as the mean square difference between actual and desired motor output signals. 
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(B) Learning corresponds to seeking the minimum of a parabolic "error landscape" in the 

space of synaptic weights. This landscape is used in statistics to estimate a function based on 

examples of its inputs and outputs. 

 

Figure 4. Dynamic range of synaptic plasticity limits learning.  

(A) In this two-dimensional error landscape (gray contours), the error vanishes at the true 

minimum, J*  (triangle). The limited dynamic range of synaptic plasticity constrains J  to the 

area within the green circle. The minimum error satisfying this constraint is J *,ridge  (diamond). 

(B) The curvature of the error landscape along the dimensions of synaptic weight space 

determines the network’s ability to produce accurate motor output. The effective number of 

degrees of freedom is the number of orthogonal directions whose curvature is steeper than a 

minimum cutoff,  Λ. The cutoff reflects by the dynamic range of plasticity. 
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Figure 5. The length and orientation of parallel fibers determines anisotropy of the 

granule cell-Golgi cell network. 

(A) A classic drawing of a cross-section of cerebellar cortex along the folium from Ramón y 

Cajal depicts the medial-lateral orientation of granule cell parallel fibers. 

(B) Our network  model of the recurrent network of granule (blue) and Golgi cells (red). Each 

granule cell may synapse on any Golgi cell whose dendrite overlaps with the range of its PF 

(red rectangle). Golgi cells connect to granule cells in an isotropic neighborhood determined 

(blue circle). Within these ranges, the particular synaptic connections are chosen randomly. 

The figure shows examples of connections from one granule cell to all its post-synaptic targets 

(blue lines), as well as from one Golgi cell to all its granule cell targets (red lines). The length 

scales, L
x
 and Ly , define the range of granule to Golgi connections, and their ratio sets 

network’s anisotropy. 
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Figure 6. Motor output performance is improved by cerebellar network geometry. 

(A) Output of a model Purkinje cell after training to match a desired output pattern (black 

trace). In this case there is no constraint imposed on the dynamic range of synaptic plasticity. 

Activity in granule cells from a model with cerebellum-like geometric connectivity (blue) or 

from a comparison network with isotropic structure (red) can be used to learn the desired 

output. 

(B) In the presence of a realistic constraint limiting the maximum modulation of PF-Purkinje 

synaptic weights, J
max

, the geometric network accurately learns the desired output. The 

isotropic network, however, fails to learn the pattern.  

(C) Motor learning is improved by geometric organization over an enormous range of the 

parameter, Λ, setting the dynamic range of plasticity. The isotropic network requires nearly 10 
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orders of magnitude greater dynamic range (J
max
)  to achieve a reduction in motor error 

comparable with the geometrically organized network. The effect is also robust with respect to 

the ISI, with similar results for intervals of 30 (thinnest) to 100 (medium) or 170 ms (thickest). 

 

Figure 7. Anistropic network geometry can improve temporal processing for motor 

learning. 

(A-C) Contour plots show the number of degrees of freedom for learning as a function of the 

length scales, L
x
 and Ly , for synaptic connections from Gr to Go cells. Dashed black line 

denotes isotropic models (Lx = Ly ) . All synaptic weights (in arbitrary units) increase from 1 

(A), to 10 (B) and 100 (C). Note that increasing synaptic weights 100 times leads to a 10-fold 

increase in the degrees of freedom, but also results in unstable dynamics. 

(D) Cumulative density of states as a function of normalized oscillation frequency for four 

different geometries, corresponding to the points marked in the phase diagrams in (A-C).  The 

oscillation timescale scales with the square root of the synaptic weight.  Note that the models 

with an optimal number of degrees of freedom (green line and squares) achieve a broad 

distribution of mode frequencies but minimal redundancy between neighboring modes.  These 

models are moderately anisotropic, with 
 
L
x
/ L

y
! 2.7 . 
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Chapter 2: Lock-and-key mechanisms of cerebellar memory recall 

based on rebound currents 

ABSTRACT 

A basic question for theories of learning and memory is whether neuronal 

plasticity suffices to guide proper memory recall. Alternatively, information 

processing that is additional to readout of stored memories might occur during 

recall. We formulate a ‘lock-and-key’ hypothesis regarding cerebellum-

dependent motor memory in which successful learning shapes neural activity to 

match a temporal filter that prevents expression of stored but inappropriate motor 

responses. Thus, neuronal plasticity by itself is necessary but not sufficient to 

modify motor behavior. 

We explored this idea through computational studies of two cerebellar 

behaviors and examined whether deep cerebellar and vestibular nuclei neurons 

can filter signals from Purkinje cells that would otherwise drive inappropriate 

motor responses. In eyeblink conditioning, reflex acquisition requires the 

conditioned stimulus (CS) to precede the unconditioned stimulus (US) by >100 

ms. In our biophysical models of cerebellar nuclei neurons this requirement 

arises through the phenomenon of post-inhibitory rebound depolarization and 

matches longstanding behavioral data on conditioned reflex timing and 

reliability. Although CS-US intervals <100 ms may induce Purkinje cell 

plasticity, cerebellar nuclei neurons only drive conditioned responses if the CS-

US training interval was >100 ms. This bound reflects the minimum time for 

deinactivation of rebound currents such as T-type Ca2+. In vestibulo-ocular reflex 

adaptation, hyperpolarization-activated currents in vestibular nuclei neurons may 

underlie analogous dependence of adaptation magnitude on the timing of visual 

and vestibular stimuli. Thus, the proposed lock-and-key mechanisms link channel 

kinetics to recall performance and yield specific predictions of how perturbations 
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to rebound depolarization affect motor expression.  

INTRODUCTION  

Research to date on the biological mechanisms of long-term memory has focused 

primarily on candidate mechanisms for memory formation, such as neuronal plasticity. But to 

what degree are the phenomenological properties of memory determined by biological 

mechanisms of memory recall?  Studies on recall mechanisms have concerned re-

consolidation processes that accompany retrieval [80, 81], network attractor theories of 

associative memory [82, 83], and expression of learned reflexes [17, 84-86]. However, the 

electrophysiological dynamics that occur during recall might have an important role in 

shaping qualities such as memory reliability and generalization. Thus, a basic question is 

whether these dynamics function primarily as a readout mechanism for retrieving stored 

memories or also perform additional processing of the stored information. Pattern completion 

is one aspect of associative memory recall for which candidate biological mechanisms have 

been identified [87]. Nonetheless, the existing literature on recall has generally assumed that 

the electrophysiological dynamics of recall should facilitate effective readout, i.e. retrieving 

the appropriate memory in response to a stimulus. The possibility that some constraints on 

memory expression might also be enacted at recall has not been widely considered.  

Recent work on cerebellar memory systems indicates there are multiple loci of 

neuronal plasticity and at least two different brain areas of memory storage with distinct 

induction kinetics [88-93]. According to two-stage models of cerebellar learning, the 

numerous synapses in cerebellar cortex support flexible and rapid acquisition of new 

associations, while subsequent plasticity in the deep cerebellar or vestibular nuclei allows long 

lasting memory storage [94, 95]. Purkinje cells in the cerebellar cortex receive inputs from 

~105 parallel fibers, and project outputs to the deep cerebellar and vestibular nuclei in a highly 

convergent manner, with each nuclear cell influenced indirectly by 107-108 parallel fibers [96] 

[94]. Given the vast number of potential network states in the cerebellar cortex, a rich set of 

training experiences might lead to network states that encode undesirable or inappropriate 

movements. The plausibility of this occurring is indicated by behavioral and computational 

studies that suggest the distribution of synaptic plasticity levels might evolve in a complex 

manner throughout learning experience, rather than purely reversing course during extinction 
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or relearning [97, 98]. An example of an undesirable motor response is one executed in 

response to sensory cues that are reliably associated with rewarding or aversive stimuli but 

that arrive too late to be predictive of an appropriate motor action. Are there memory recall 

mechanisms that selectively prevent the expression of inappropriate motor responses, despite 

significant induction of synaptic plasticity? Or does plasticity induction always suffice to 

modify cerebellar-mediated motor behavior? At least for some forms of associative motor 

learning mediated by non-cerebellar memory systems, it has been shown that associative 

memory storage by itself can be insufficient to modify behavior [99]. 

To explore these issues, we formulated a ‘lock-and-key’ hypothesis stating that the 

induction of plasticity is necessary but not sufficient to modify motor behavior. There is the 

additional requirement that plasticity must shape the dynamics of neural activity (the ‘key’) to 

match a temporal filter (the ‘lock’) that selectively precludes inappropriate motor responses to 

sensory stimuli. We examined this hypothesis in the context of two cerebellum-dependent 

behaviors, classical eyeblink conditioning [100] and adaptation of the vestibulo-ocular reflex 

(VOR) [95, 101], for which there exist longstanding, rich behavioral data sets  [20, 102]. If our 

hypothesis is true, what biological mechanisms might serve as the lock for these two 

behaviors?  

This paper focuses on rebound currents in the deep cerebellar nuclei (DCN) and 

medial vestibular nuclei (MVN) neurons as candidate lock mechanisms, because it is well 

established that these currents perform significant temporal transformations of hyperpolarizing 

inputs, such as those from cerebellar Purkinje cells believed to trigger learned movements. 

Rebound channels, such as low voltage-activated (T-type) and hyperpolarization-activated 

cation (h) channels, are expressed at sufficient density to generate robust post-inhibitory 

rebound depolarizations in DCN and MVN neurons, the output neurons of cerebellar circuits 

[103-107]. For both behaviors studied, rebound channel kinetics emerge as crucial 

determinants of the minimum allowable duration between a sensory cue and a trained motor 

response. If the delay between the cue and a well-timed response is less than the time needed 

to activate rebound channels fully from the neuronal resting potential, the magnitude of the 

learned response declines or vanishes, thereby enacting the lock mechanism. This proposal 

represents a direct link from channel kinetics to learning performance and yields specific 

predictions of how learning performance is affected by perturbations to the rebound process.` 

In eyeblink conditioning, key aspects of the behavior that remain poorly understood 
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concern stimulus timing. Training of a reliable reflex requires the conditioned stimulus (CS), 

such as a tone, to start at least ~100 ms prior to the unconditioned stimulus (US), such as an 

air puff to the eye (Figure 1A) [20, 21]. Even after averaging data over multiple subjects, there 

remains a steep dependence of reflex acquisition on the CS-US training interval (Figure 1B), 

with the expression of conditioned blinks falling sharply for intervals <100 ms [21, 108-111]. 

What is the mechanistic basis for this effect? Analogous, unexplained dependencies on 

stimulus timing have been reported for VOR adaptation, in which the magnitude of learned 

eye movements depends on the timing between pulsed visual and vestibular training stimuli 

[102].  

According to current thinking in the field an important mechanism of memory 

formation is the long-term depression (LTD) of cerebellar parallel fiber (PF) to Purkinje cell 

synapses induced by synchronous activation of PF and climbing fiber (CF) inputs to Purkinje 

cells [11, 12, 112, 113]. In eyeblink conditioning, it is thought that PF and CF inputs 

respectively convey signals regarding the CS and the US [60, 114-117], and that LTD 

resulting from repeated CS-US pairings leads to a conditioned reflex to the CS alone. This is 

proposed to occur since LTD should diminish the efficacy of CS-driven input to Purkinje 

cells, allowing disinhibition of deep cerebellar nuclei (DCN) neurons that receive GABAergic 

Purkinje cell inputs and drive conditioned reflexes [12]. In VOR adaptation, CFs and PFs 

respectively convey visual and vestibular information, and LTD is proposed to allow adaptive 

increases in VOR amplitude by reducing the strength of PF inputs signaling ipsiversive head 

rotation [113]. Although other cerebellar plasticity mechanisms exist [88, 90, 91], multiple 

strains of mice with disrupted LTD show deficits in eyeblink conditioning and VOR 

adaptation [118-123]. Nonetheless, accounts of cerebellar-mediated learning based solely on 

LTD do not easily explain the full range of behavioral data [92, 93, 98, 124-126]. 

One issue concerns whether Purkinje cells purely inhibit motor responses. Purkinje 

cells might be partly excitatory in their net effect, due to post-inhibitory depolarization in their 

target DCN and MVN neurons [103-106, 127]. Another issue concerns the possible role in 

learning of long-term potentiation (LTP) at the PF-Purkinje cell synapse. LTP and LTD 

induction at this synapse are spike-timing dependent [128], with LTP induced by unpaired PF 

or asynchronous PF-CF input [129, 130]. Maximal LTD induction seems to occur for PF 

activity that slightly precedes CF activity by 50-100 ms, which likely reflects the kinetics of 

postsynaptic Ca2+ dynamics [131]. LTD induction can occur with either PF or CF activity 
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occurring first, but delays of more than ~200 ms are ineffective with either ordering [130]. It 

has been suggested that disinhibition of cerebellar nuclei neurons and spike-timing dependent 

plasticity suffice to explain the requirement in eyeblink conditioning for the CS-US interval to 

be >100 ms [130]. However, this has never been demonstrated explicitly using either 

computational modeling or experimental manipulation of behavior. A main difficulty is that 

the empirically determined rules for LTD induction suggest LTD should occur at short CS-US 

intervals that do not lead to acquisition of conditioned reflexes in behavioral experiments 

[130]. Furthermore, the dependence of learning performance on the CS-US interval appears 

much steeper than that of spike-timing dependent plasticity at the PF-Purkinje cell synapse 

[108-111, 130]. Thus, the degree to which conditioned reflex acquisition is shaped by 

physiological mechanisms other than spike-timing dependent plasticity remains an important 

issue for experimental investigation.  

Here, we consider the novel possibility that significant shaping of learned motor 

expression might occur through the electrophysiological mechanisms of memory recall. In our 

work LTP and LTD emerge as complementary processes, both of which are important for 

memory formation as well as for memory clearance. This contrasts with the common view of 

LTD and LTP as opposing processes, one allowing memory storage and the other clearance 

[126, 129, 132]. Because plasticity induction is spike-timing dependent, we begin by 

considering the timing of sensory driven activity in the PF axons of cerebellar granule cells. 

Using a series of electrical compartmental models of increasing complexity, we simulate 

responses of DCN and MVN cells to learned sensory cues. This allows us to validate 

quantitatively the data from our DCN cell simulations against the classic behavioral data on 

eyeblink conditioning [108-111], by comparing the percentage of trials with successful 

responses as found experimentally to data generated by our models. 

Comparison of the VOR adaptation magnitude in our modeling to that in behavioral 

studies suggests post-inhibitory rebounds might play a role in multiple cerebellum-dependent 

behaviors. Based on the results of our biophysical models we provide an algorithmic 

description of the ‘lock-and-key’ mechanism as a temporal filter. Learning experience that 

successfully modifies motor behavior shapes neural activity to match this temporal filter. 

Unsuccessful training can yield comparable magnitudes of synaptic plasticity, but the resulting 

patterns of Purkinje cell activity do not trigger learned motor responses. We have organized 

the following sections so that readers who wish to omit the computational details may skip the 
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Methods section below without loss of logical continuity. 

MATERIALS AND METHODS 

General simulation procedures 

We created compartmental models of DCN and MVN cells in the NEURON [133]  

and MATLAB software environments and set model parameters using empirically determined 

values whenever possible. Fortunately, much is known about DCN cells from in vitro studies. 

We found that values determined from measurements in DCN and MVN cells, rather than 

other cell types, facilitated consistency with behavioral data. The current balance equation 

describing the balance of capacitive and ionic currents, C
m
(dV / dt) = ! I

ionic" , was integrated 

over time using the MATLAB function ode45 for deterministic one-compartment simulations, 

an Euler method for one-compartment simulations with stochastic synaptic inputs, or 

NEURON’s implicit Euler method for two-compartment simulations. In all simulations, time-

steps were less than or equal to 0.1 ms and the membrane capacitance, Cm, was 1 µF/cm2.  

Voltage-dependent currents obeyed equations of the form I = g x!y(V "V
rev
) , where 

g  is the maximum conductance and V
rev

 is the reversal potential. Activation variables, x, 

followed first-order kinetics defined by dx dt = !
x
["

x
(V )(1# x)#$

x
(V )(x)] , where !

x  and !
x

 

are forward and backward rates and 
 
!
x
=Q

10

"T 10
!
C  is a temperature factor. Q

10
was 1.4 for T-

type current and 2.3 for all other conductances. !T  is the difference between the 

physiological temperature of 37°C used for all simulations and the temperature at which 

experimental measurements of channel kinetics were made. Inactivation variables, y, obeyed 

analogous expressions. Steady state and relaxation time constants are given in terms of !
x  and 

!
x

: x! ="
x
("

x
+#

x
)  and !

x
=1 "

x
#
x
+$

x( )%& '( .  

The firing rates of Purkinje cells were modeled to be from a cerebellar network after 

behavioral training. Electrophysiological data from in vivo recordings were used to constrain 

background firing rates, rPkj ,b = 40 Hz (Berthier and Moore 1986; Kotani et al. 2006; Jirenhed 

et al. 2007), and the modulation of Purkinje cell firing rates due to learning-related cerebellar 

plasticity; low and high Purkinje cell spikes rates following depression and potentiation of 
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parallel fiber inputs were rPkj ,d = 20 Hz and rPkj , p = 100 Hz, respectively (Berthier and Moore 

1986; Kotani et al. 2006; Jirenhed et al. 2007).  

Given these basic constraints the average Purkinje cell spike rate, RPkj (t) , was 

determined by first convolving a smooth plasticity function, S(!t) , whose argument is the 

relative delay between activity in parallel fibers and climbing fibers (Figure 2A), with a 

boxcar function, U(t) , representing a US of 10 ms duration. The result of this convolution 

was multiplied by a smooth function, C(t) , representing a CS of duration no less than a 

minimum interval, t
CSmin

 = 50 ms.  

S(!t) = A
1
+ A

2
T [(!t " tLTD ) / # ]"T [(!t " tLTD" ) / # ]{ },

U(t) =

0, t < tISI

1, tISI $ t $ tISI +10ms

0, t > tISI +10ms

%

&
'

(
'
'

,

C(t) =T [(t "# ) / # ]"T [ t "# "max(tCSmin , tISI +10ms)( ) / # ],

RPkj (t) = rPkj ,b +C(t) S( )t " t)U( )t )d )t .
"*

*

+

 

where t
ISI

 is the interstimulus interval between the CS and US onset times. t
LTD!

= –10 

ms and t
LTD

= 75 ms respectively set the minimum and maximum allowable delay between 

CS-driven parallel fiber and US-driven climbing fiber activity for induction of LTD, and τ  = 

10 ms is a characteristic transition time describing the smooth temporal evolution of neural 

dynamics. We used the smoothing function, T [x] , to ensure gradual changes in spike rates: 

T [x]=

0 x < !1

(1+ cos("x)) / 2 !1# x < 0

1 x $ 0

%

&
'

(
'

.  

The constants, A
1
and A

2
, were set such that the minimum and maximum Purkinje 

cell firing rates for a long ISI were rPkj ,d = 20 Hz and rPkj , p = 100 Hz respectively (Table 1) 

(Berthier and Moore 1986; Kotani et al. 2006; Jirenhed et al. 2007). These plasticity rules led 

to gradual transitions between distinct average firing rate values over ~20 ms intervals, 

approximating the observed intervals over which Purkinje cells modulate their spiking rates 

during expression of motor learning [134, 135].   

CS-driven modulation of the rate of mossy fiber spiking was also constrained by data 
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from in vivo electrophysiological recordings and was expressed as:  

R
MF
(t) = r

MF ,b
+ (r

MF ,CS
! r

MF ,b
)C(t)   

where r
MF ,b

= 10 Hz is the background firing rate for mossy fibers and r
MF ,CS

= 50 Hz 

is the spiking rate of mossy fibers during presentation of the conditioning stimulus [136, 137]. 

Model 1 – A single-compartment model of DCN neurons 

We modeled a DCN cell with a single electrical compartment that included leak ( I
L

) 

and T-type Ca2+ ( I
T

) currents, as well as synaptic currents due to inputs from Purkinje cells 

( Isyn,Pkj ) and mossy fibers ( Isyn,MF ). Membrane voltage dynamics were determined by time 

integration of the current balance equation: Cm (dV / dt) = !IT ! IL ! Isyn,Pkj ! Isyn,MF . The 

passive current, I
L
= g

L
(V !V

L
) , was an admixture of two components: a tonic mixed-cation 

current that is characteristic of DCN cells and has a –30 mV reversal potential [138], and a 

standard leak current with –75 mV reversal potential [105, 127]. Total leak conductance, g
L

, 

and leak reversal potential, V
L

, were determined by the DCN cell’s resting potential of V
rest

 = 

–58 mV (Aizenman and Linden 1999; Llinas and Muhlethaler 1988), and the observed 

membrane time constant of ~12 ms (Jahnsen 1986a; Llinas and Muhlethaler 1988): 

gL =Cm / !m " gi
i

# ,

VL =Vrest + Ii / gL
i

# + Isyn / gL
syn

#
 

where gi  and I
i  are the steady-state conductance and current density at V

rest
 for each 

of the active conductances, and Isyn  are the steady-state synaptic current densities determined 

by V
rest

 and the background rate of spiking of each type of synaptic input.  

Parameter values for Purkinje and mossy fiber synaptic inputs were constrained by 

physiological measurements: Vsyn,Pkj = –75 mV [105, 127], ! syn,Pkj  = 14 ms [139], and Vsyn,MF = 

0 mV [139] (Table 1). Glutamatergic synapses in the DCN have significant AMPA and 

NMDA components [139]. As a simplification, ! syn,MF  for mossy fibers was chosen to be 

23 ms by weighting the AMPA and NMDA decay time constants at –60 mV by the measured 

relative amplitudes of AMPA and NMDA glutamatergic input [139]. T-current was the sole 
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voltage-dependent current: IT = gT nl (V !VCa ) , with V
Ca

= 140 mV [140].  T-type kinetics 

were adapted from a model of the α1G T-type channel [141], which is highly expressed in the 

DCN [142]. Steady-state values of the gating variables, n
!

 and l
!

, were modified to fit 

measurements of T-type currents in DCN cells [143]. Measurements of T-type currents in 

DCN neurons were made at room temperature, so we used a Q
10  of 1.4 for temperature 

adjustment to produce rebound depolarizations at 37°C [127]. After temperature adjustment 

these expressions were: 

!
n
= 0.287+ 0.0711" exp(#V /15.8)   

!
l
= 5.96+ 0.00677 " exp(#V / 7.85)  

n
!
= 1.00+ exp " V + 42.0( ) 4.25( )( )

"1

  

l
!
= 1.00+ exp V + 63.0( ) 3.50( )( )

"1

, 

where in this and all subsequent expressions numerical parameters with dimensions of 

time and voltage are expressed in units of ms and mV, respectively. 

Unfortunately, several DCN cellular parameters could not be tightly constrained by 

biophysical data. T-type channels appear to be most dense in DCN cell distal dendrites [143]. 

Thus, estimation of total T-type conductance from somatic recordings is difficult. However, in 

initial simulations we identified a broad range of T-type conductance values over which 

rebound depolarizations occurred, indicating that the occurrence of post-inhibitory rebound is 

not highly sensitive to the value of the T-type conductance density. In all subsequent single-

compartment simulations (Models 1 and 2) we chose g
T

= 0.5 mS/cm2, within the middle of 

this identified range.  

The weight of Purkinje cell synaptic input, Wsyn,Pkj  = 0.2 mS/cm2, was chosen to be 

near the middle of a range of values capable of inducing physiological 10-15 mV changes in 

membrane voltage when input firing rates were modulated. The mossy fiber synaptic 

conductance weight, Wsyn,MF  = 4 µS/cm2, was chosen such that mossy fiber input alone was 

insufficient to drive the cell to rebound. Without this stipulation there would be little 

dependence of learned responses on Purkinje cell input, contrary to experimental findings. In 

Model 1 all synaptic inputs were simulated in a deterministic fashion. Each synaptic 

conductance density, gsyn (t) , was determined by convolving the input spike rate with an 
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exponential function of time constant ! syn  and amplitude Wsyn , which represented the 

conductance response (Table 1). 

Model 2 – A single-compartment model of dendritic Ca2+ spiking 

Model 2 was the same as Model 1 but with two modifications. First, we added a high-

voltage activated (HVA) Ca2+ current, so we could study how graded T-current mediated 

rebound depolarizations led to the initiation of HVA Ca2+ spikes. The conductance model for 

I
HVA

was identical to that used in [144]. Second, membrane voltage dynamics were no longer 

deterministic. Instead, the time-varying synaptic conductance density was determined by the 

stochastic arrival of action potentials at times selected independently, as governed by Poisson 

statistics and the instantaneous spike rate. The number of Purkinje cell (Nsyn,Pkj = 50) and 

mossy fiber (Nsyn,MF = 10) inputs roughly matched the ratio, R, of GABAergic to glutamatergic 

synapses found in the DCN [145] (Table 1). The occurrence of a pre-synaptic spike on any of 

these independent individual inputs led to an instantaneous jump in synaptic conductance of 

amplitude Wsyn,Pkj Nsyn,Pkj  or Wsyn,MF
N

syn,MF , which then declined exponentially with time 

constant ! syn, Pkj  or ! syn, MF , respectively (Table 1).  

Model 3 – A two-compartment model of DCN neurons 

A DCN cell model with dendritic and somatic compartments was used to test the 

effect of rebound conductances on Na+ spiking output. The potentials of dendritic (V
d

) and 

somatic (V
s
) membranes were determined by the currents flowing in each compartment [146]:  

Cm

dVd

dt
= !IT ! IL ! IHVA ! ISK ! Isyn,Pkj ! Isyn,MF !

gc (Vd !Vs )

1!"
  

Cm

dVs

dt
= !IT ! IL ! IHVA ! ISK ! IKv ! INa !

gc (Vs !Vd )

"
      

where the coupling between the two compartments was specified by the conductance 

between compartments, g
c

, and the ratio of somatic membrane surface area to total cell 

surface area, ! .  The passive current, I
L

, was determined independently in both 

compartments from V
m  = –58 mV and the membrane time constant !

m
 = 12 ms. The 

somatic compartment exhibited spontaneous Na+ spiking, so we determined I
L

 by 
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setting the I
Na

 gating variables to m
!
V
rest( )  and h

!
V
rest( ) , and the I

Kv
 gating variable to 

n
!
V
rest( ) . Stochastically arriving synaptic currents entered the dendritic compartment. 

For computational ease, we modeled the spike rate of Purkinje cells using a simple 

formula that closely approximates the rate function used in Models 1 and 2: 

RPkj (t) = rPkj ,b +C(t){rPkj ,p ! rPkj ,b +

rPkj ,d ! rPkj ,p( ) T
t ! tISI + tLTD
" +10 ms

!1
#
$%

&
'(
!T

t ! tISI + tLTD!
" +10 ms

!1
#
$%

&
'(

)

*
+

,

-
.
/
0
1

 

Active somatic currents were T-type Ca2+, high-voltage activated Ca2+ ( I
HVA

; [143]), 

Ca2+-activated K+ ( I
SK

; [138]), fast Na+ ( I
Na

), and delayed rectifying K+ ( I
Kv ). The simulation 

used the total Ca2+ current, I
Ca

, to determine the internal Ca2+ concentration, which controlled 

the gating of I
SK

. In addition to I
L

, the dendrite had T-type currents [143], I
HVA

 (at half the 

density as in the soma; see [143]), I
SK

, and synaptic input. Conductance models for I
HVA

, 

I
SK

, I
Kv

, and I
Ca

 were identical to those used in [144], including parameter values. I
Na

 

was based on the model of [144]. For Na+ channel activation, ! = 3 with kinetics determined 

by  

!
x,Na = 0.182 V + 31( ) 1" exp " V + 31( ) 9( )( )   

!
x,Na = "0.124 V + 31( ) 1" exp V + 31( ) 9( )( ) . 

For Na+ channel inactivation, ! = 1 and  

!
y,Na = "

Na
0.024 V + 48( ) 1# exp # V + 48( ) 5( )$% &'# 0.0091 V + 73( ) 1# exp V + 73( ) 5( )$% &'( )$

%
&
'
#1

 

y
!,Na = 1+ exp V + 64( ) 6.2( )( )

"1 . 

Conductance densities and the voltage dependence of I
Na

 gating were chosen 

to reproduce the observed tonic DCN cell firing rate of ~25 Hz [103, 138, 147] and 

spike width of ~1.5 ms [105, 107]. Reversal voltages were V
Na

 = 50 mV, V
K

= –90 mV, and 

V
Ca

=140 mV (Jahnsen 1986b; Mainen & Sejnowski 1996).  

Coupling parameters, g
c

 = 0.53 µS/cm2 and !  = 0.05, were chosen to ensure each 

compartment had relatively independent dynamics while still permitting dendritic voltage 
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deflections to affect somatic spiking. Synaptic weights were set by the same criteria as for the 

one-compartment models, with Wsyn,Pkj  = 0.2 mS/cm2 and Wsyn,MF  = 4 µS/cm2. As in Models 1 

and 2, in the dendrite g
T

 = 0.5 mS/cm2 was set near the middle of a broad range of values that 

allowed rebound depolarization. In the soma g
T

 = 5 µS/cm2, reflecting the lower density of 

low-voltage activated Ca2+ channels in this compartment [143]. The densities of Ca2+-activated 

K+ conductance, gSK  = 32 µS/cm2, and of high-voltage activated Ca2+ conductance in the 

soma, gHVA  = 0.3 mS/cm2, and dendrite, gHVA = 0.15 mS/cm2, had scarcely any effect on the 

probability of HVA Ca2+ spiking in response to synaptic inputs across a broad range of 

conductance densities and were chosen to reduce the duration of the Ca2+ spike to 

physiologically realistic values [105, 127]. Hodgkin-Huxley conductances, g
Na

 = 144 mS/cm2 

and g
Kv

 = 56 mS/cm2, were chosen to reproduce the experimental observation of spontaneous 

spiking in the soma at V
rest

 = –58 mV. 

Phase plane analysis of rebound depolarizations 

To study whether a memory recall mechanism based on rebound depolarization would 

be robust, we reduced Model 1 to a system of two dynamical degrees of freedom amenable to 

graphical phase plane analysis. This involved an approximation in which the T-type activation 

variable was set equal to its asymptotic value, n = n
!
(V ) , reducing the dynamical variables to 

only the T-type inactivation variable, (l), and the membrane voltage, (V ). Because this 

approximation increased the membrane excitability, resulting in larger magnitude rebounds, 

we decreased the density of T-type Ca2+ channels to g
T

= 0.3 mS/cm2 as a compensatory 

measure. The system’s dynamical trajectories within the (V, l) phase plane could then be 

fruitfully studied by determination of the two nullclines, on which the time derivatives vanish: 

dl

dt
= 0 ! l = l

"
(V )

dV

dt
= 0 ! l =

gL (V #VL )+ I syn,Pkj (V )+ I syn,MF (V )

gT n" (V ) $ (VCa #V )
,

  

where the Purkinje cell and mossy fiber synaptic input currents Isyn (V ) = gsyn (V !V
syn
)  

represent the mean synaptic currents as determined from the synaptic weights and background 

firing rates. Both time derivatives vanish at the intersection point of the two nullclines, so this 
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is a fixed-point of the dynamics. Fixed-points during the neuronal resting state (stage 1), the 

CS-US interstimulus interval up until tLTD before the expected US onset (stage 2), and the 

remaining portion of the CS (stage 3), were found using the MATLAB function fzero to solve 

for the intersection of the nullclines. Linear stability analysis within a neighborhood of the 

resting (stage 1) fixed-point at V = –58 mV revealed that this fixed-point is stable for g
T

 < 

1.28 mS/cm2. The dynamical trajectories near this fixed-point exhibit damped oscillations for 

g
T

 ≥ 0.20 mS/cm2. The density of T-type channels used in our studies (Table 1) results in a 

stable spiral fixed-point.  

A map of rebound magnitudes in the phase plane (Figure 6C) was built by 

numerically integrating the equations of motion using MATLAB’s Runge-Kutta initial-value 

differential equation solver, ode45. A series of evenly spaced initial points was chosen along 

the boundary lines of the phase plane, defined by V = –72 mV and l = 0, and trajectories were 

integrated forward in time using the current balance equation and the constant synaptic input 

values of stage 3. Integration proceeded until the trajectories reached the stage 3 fixed point. 

Each trajectory formed a contour (level-curve) on the phase plane map with the contour 

amplitude given by the maximum depolarization achieved on that trajectory. 

To determine the voltage threshold curve for firing all-or-none Ca2+ spikes (Figure 

6D), we added a high-voltage activated (HVA) Ca2+ conductance [144] to the phase plane 

treatment of Model 1 in which n relaxes instantaneously to its asymptotic value, n = n
!
(V )  

(Figure 6 panels A-C). This yielded a deterministic version of Model 2 that produced virtually 

the same trajectories as Model 1 over the voltage range, V < –35 mV, in which the HVA 

channels are largely closed (Figure 6D). As before, the instantaneous activation of T-type 

currents led to increased membrane excitability, for which we compensated by decreasing the 

density of T-type Ca2+ channels to g
T

= 0.3 mS/cm2 and the density of HVA Ca2+ channels to 

gHVA = 0.09 mS/cm2. We solved for the dynamical trajectories by integrating the equations of 

motion forward in time starting at a series of initial points distributed along two boundary 

lines of the phase plane, defined by V =  –72 mV and l= 0. The trajectories fell into two 

classes depending on whether the T-current mediated rebound was of sufficient magnitude to 

cross the threshold for generation of a HVA Ca2+ spike. 
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Phase plane movies showing model trajectories  

Movies of deterministic (Movies 1 and 2 using Model 1) and stochastic (Movie 3 

using Model 2) voltage trajectories were created in MATLAB. As in the phase plane analysis 

of Figure 6, Movies 1 and 2 relied on the mathematical approximation of instantaneous 

relaxation of the T-channel activation variable to its asymptotic value. The motion of the 

V nullcline was determined by solving the equation dV dt = 0 for l, using the steady state 

values of the synaptic conductances, gsyn , that would be attained given constant Purkinje cell 

and mossy fiber spiking at rates equal to their instantaneous values. Numerical integration of 

the current balance equation used a maximum timestep of 0.1 ms. In Movie 3 the synaptic 

conductances were modulated by the independent but stochastic arrivals of spikes from 50 

Purkinje cells and 10 mossy fibers.  

Single-compartment model of MVN neurons 

  We created a simple one-compartment model of MVN cells (Table 2) obeying 

the current balance equation, Cm (dV / dt) = !IL ! Ih ! Isyn,Pkj ! Isyn,MF , in which the reversal 

potential and conductance values for the leak current, I
L
= g

L
(V !V

L
) , were determined by the 

membrane time constant (12 ms), the resting potential (–58 mV), and Ih = ghq(V !Vh ) , where 

V
h

= –20 mV is the mixed-cation reversal potential [148, 149] and q is the activation variable. 

Synaptic inputs were modeled in a deterministic fashion, as in Model 1 above, with synaptic 

time constants ! syn,Pkj  = 8.9 ms and ! syn,MF  = 5.5 ms (Chun et al. 2003) and synaptic weights 

Wsyn,Pkj  = 0.5 mS/cm2 and Wsyn,MF  = 4 µS/cm2. 

Measured h-current time constants vary broadly across cell types, but detailed 

measurements of h-current in MVN cells have not yet been made. The HCN2 isoform appears 

to be the predominant subtype of h-channel in the vestibular nuclei (Santoro et al. 2000), and 

the kinetics of this isoform are consistent with the activation time constant of 

hyperpolarization-activated rebound burst firing in the MVN, measured to be ~620 ms at 31°C 

(Sekirnjak and du Lac 2002). Following (Sekirnjak and du Lac 2002) we modeled I
h

 kinetics 

with a fixed time constant, ! q .  To determine the steady-state voltage dependency for HCN2 

we fit measurements of total h-current obtained in a xenopus oocyte expression system [149]: 
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gh = 3 mS/cm2 was chosen to be within a range of values that produced rebound 

depolarization. We used τq= 400 ms for MVN simulations shown in Figures 7C and 7E, 

because this value approximated the time constant that generated the largest ratio of rebound 

amplitude between the long ISI condition and the zero ISI condition. Rebound amplitude in 

the zero ISI condition varied by only ~3 mV across a wide range of time constants, 50 ms < 

!
q < 1000 ms. 

Linear-Nonlinear (LN) model of lock-and-key mechanism 

For our algorithmic description of memory retrieval we generated a set of ‘key’ 

activity patterns, K (t) , using the CS-driven waveforms for the instantaneous Purkinje cell 

spike rates arising for ISI values ranging from 0 to 200 ms. The Purkinje cell spiking rates 

were the same as for biophysical Model 1. We created a linear filter, 
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where Z  is a normalization constant chosen to be the maximum absolute value of the 

linear response, T t[ ]  is the smooth transition function (see General stimulation procedures), 

t
F

 = 20 ms and !  = 10 ms. The filtered key activity was determined by the convolution:  

x(t) = K ( !t )F(t " !t )d !t
0

#

$  

Finally, this signal was passed through an exponential nonlinearity, 

M (t ) = G[x(t )] = exp[h * x(t )] , where h  = 12 was a gain factor. The response amplitude for a 

given ISI value (Figure 8E) was determined by the peak value of M (t)  normalized by the 

amplitude attained for a long ISI of 200 ms. 
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Table 1. Parameters for compartmental simulations of DCN neurons. 

The symbol, description, value, and citations for each parameter in Models 1-3 of DCN cells. 

Parameter Description Value Model References 
Cm Membrane capacitance 1 µF/cm2 1,2,3  
Vrest Resting membrane potential -58 mV 1,2,3 [105, 107]  

VCa Ca2+ reversal potential 140 mV 1,2,3 [140] 

Vsyn,Pkj 
GABAergic reversal potential, 
determined by Cl- gradient -75 mV 1,2,3 [105, 127] 

Vsyn,MF Glutamatergic reversal potential 0 mV 1,2,3 [139] 

VNa Na+ reversal potential 50 mV 3 [150] 

VK K+ reversal potential -90 mV 3 [127, 150] 

rPkj,b 
Background Purkinje cell spike 
rate 40 Hz 1,2,3 [134] 

rPkj,d 
Reduced Purkinje cell spike rate 
due to LTD of parallel fiber 
inputs 

20 Hz 1,2,3 [134] 

rPkj,p 
Elevated Purkinje cell spike rate 
due to LTP of parallel fiber 
inputs 

100 Hz 1,2,3 [134] 

rMF,b 
Background mossy fiber spike 
rate 10 Hz 1,2,3 [136, 137] 

rMF,CS CS-driven mossy fiber spike rate  50 Hz 1,2,3 [136, 137] 

 
gT  Maximum T-type Ca2+ 

conductance in Models 1 and 2 0.5 mS/cm2 1,2  

 
gT  

Maximum T-type Ca2+ 
conductance in phase plane 
modeling 

0.3 mS/cm2 1,2  

     
 
gT  

Maximum T-type Ca2+ 
conductance in Model 3, somatic 
compartment 

5 µS/cm2 3  

     
 
gT  

Maximum T-type Ca2+ 
conductance in Model 3, 
dendritic compartment 

0.5 mS/cm2 3  

Wsyn,Pkj 
Maximum total conductance of 
Purkinje cell synapses 0.2 mS/cm2 1,2,3  

Wsyn,MF Maximum total conductance of 
mossy fiber synapses 4 µS/cm2 1,2,3  

 
gHVA  Maximum high-voltage activated 

Ca2+ conductance in Model 2 0.15 mS/cm2 2  

 
gHVA  

Maximum high-voltage activated 
Ca2+ conductance in Model 2 
phase-plane 

0.09 mS/cm2 2  

 
gHVA  

Maximum high-voltage activated 
Ca2+ conductance in Model 3, 
somatic compartment 

0.3 mS/cm2 3  
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gHVA  

Maximum high-voltage activated 
Ca2+ conductance in Model 3, 
dendritic compartment 

0.15 mS/cm2 3  

 
gSK  Maximum Ca2+-dependent K+ 

conductance 32 µS/cm2 3  

 
gNa  Maximum Hodgkin-Huxley type 

fast Na+ conductance  144 mS/cm2 3  

 
gKv  Maximum Hodgkin-Huxley type 

K+ conductance 56 mS/cm2 3  

τm Membrane time constant 12 ms 1,2,3 [103, 105] 

τsyn,Pkj 
GABAergic synaptic time 
constant 14 ms 1,2,3 [139] 

τsyn,MF Glutamatergic synaptic time 
constant 23 ms 1,2,3 [139]  

Nsyn,Pkj Number of Purkinje cell inputs 50 2,3  

Nsyn,MF Number of mossy fiber inputs 10 2,3  

R Ratio of Purkinje to mossy fiber 
inputs 5 2,3 [145] 

gc Inter-compartmental coupling  0.53 µS/cm2 3 [144, 146] 

ρ 
Percent of membrane surface 
area occupied by somatic 
compartment  

5% 3  
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Table 2. Parameters for compartmental simulations of MVN neurons.  

The symbol, description, value, and literature citations for each of the parameters used in 

simulations of MVN cells. 

 
Parameter Description Value References 

Cm Membrane capacitance 1 µF/cm2   

Vrest Resting membrane potential -58 mV [151] 

Vsyn,Pkj GABAergic reversal potential, determined by 
Cl- gradient -75 mV [140] 

Vsyn,MF Glutamatergic reversal potential 0 mV 
 

[140, 152] 

Vh Ih mixed-cation reversal potential -20 mV [148, 149] 

rPkj,b Background Purkinje cell spike rate 40 Hz [134] 

rPkj,d 
Reduced Purkinje cell spike rate due to LTD 
of parallel fiber inputs 20 Hz [134] 

rPkj,p 
Elevated Purkinje cell spike rate due to LTP 
of parallel fiber inputs 100 Hz [134] 

rMF,b Background mossy fiber spike rate 10 Hz [136, 137] 

rMF,CS Mossy fiber spike rate during head rotation 50 Hz [136, 137] 

 
g

h
 Maximum h-type cation conductance  3 mS/cm2  

Wsyn,Pkj Maximum total conductance of Purkinje cell 
synapses 

0.5 
mS/cm2  

Wsyn,MF Maximum total conductance of mossy fiber 
synapses 4 µS/cm2  

τm Membrane time constant 12 ms [153, 154]  

τsyn,Pkj GABAergic synaptic time constant 8.9 ms [152] 

τsyn,MF Glutamatergic synaptic time constant 5.5 ms [152] 

τq h-current activation time constant 400 ms  
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RESULTS 

A theoretical framework for cerebellum-dependent learning and memory 

Cerebellar granule cells number in the ten billions but individually appear to be rarely 

active, producing only a few spikes at a time in response to mossy fiber input [70]. Such 

transient activation implies that after behavioral training and plasticity induction at PF-

Purkinje cell synapses, presentation of a learned sensory cue should drive a biphasic 

modulation of population Purkinje cell activity (Figure 2). For example, in classical 

conditioning transient CS-driven granule cell activity that is concurrent with US-driven CF 

activity will lead to LTD at PF-Purkinje cell synapses (Figure 2A). CS-driven granule cell 

activity that is asynchronous with CF activity will lead to LTP. During subsequent CS input, 

the net effect of LTD and LTP induction at distinct PF-Purkinje cell synapses will be biphasic 

modulation of the aggregate Purkinje cell activity received by a DCN neuron (Figures 2B and 

2C). Similarly, overlapping pulses of vestibular and visual input in VOR adaptation will also 

lead to biphasic modulation of Purkinje cell activity. This general pattern of modulation does 

not hinge on the details of granule cell coding but is contingent on there being spike-timing 

dependent bi-directional plasticity and subsets of granule cells in which sensory driven 

activity lasts for only portions of the sensory cue duration [16, 17, 85].  

We explored the conditions under which biphasic activation of Purkinje cells leads to 

reliable post-inhibitory rebound depolarization of their target neurons that drive learned motor 

responses. In classical conditioning, whether Purkinje cell spiking first rises and then falls in 

response to a learned CS, or vice versa, depends on whether the CS and US were paired with a 

‘forward’ (CS-US) or ‘backward’ (US-CS) ordering. The two patterns of aggregate Purkinje 

cell activity should be quite distinct in their propensity to induce DCN cell rebounds. A rise 

and then fall of Purkinje cell spiking appears well suited to induce rebounds by causing a 

hyperpolarization and then a depolarization in DCN target cells. The DCN cell resting 

potential is about –58 mV [107], at which T-channels are largely inactivated (Figure 3). The 

initial hyperpolarization allows T-channels to deinactivate and the ensuing depolarization 

allows them to activate. The opposite pattern of Purkinje cell spiking resulting from backward 

training should be a poor initiator of DCN cell rebounds, because the initial depolarization will 

heighten T-channel inactivation and should largely preclude rebounds. To test these ideas, we 
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performed compartmental modeling of DCN cells to explore if such a disparity in rebound 

generation could account for the observed differences in behavioral responses following 

backward versus forward classical conditioning. For our modeling, we described the timing 

dependence of LTP and LTD induction on the interval between paired activation of PF and CF 

afferents as a smooth function that permits LTD for PF activity anticipating CF activity by up 

to a time tLTD ~75 ms (Figure 2A) (see Materials & Methods). This timing dependence mimics 

that of the experimental data [130]. The maximal levels of LTD and LTP induction in our 

models did not depend on the CS-US training interval. By comparison, the durations of each 

phase of the biphasic Purkinje cell activity did vary with the CS-US interval. This distinction 

allowed us to focus initially on the signal processing performed by the DCN cells rather than 

on effects that depend on plasticity amplitude. We subsequently explored how changes in 

plasticity amplitude, as quantified through the resulting changes in Purkinje cell spike rates, 

affect a rebound-based mechanism for memory recall in the DCN cells.  

Memory recall in a one-compartment model DCN neuron  

We studied whether forward and backward patterns of biphasic Purkinje cell spiking 

could lead to distinct patterns of rebound activity in DCN cells after presentation of a 

classically conditioned stimulus. We created a series of compartmental DCN cell models that 

received inputs from both Purkinje cells and mossy fibers, and we interpreted the resulting 

rebounds as the initiators of conditioned motor responses. The simplest model (Model 1) had 

one electrical compartment, lacked fast spiking capability, and had only leak, T-type, and 

synaptic conductances (Figure 3A). This allowed us to focus initially on rebound generation, 

apart from issues studied later concerning membrane potential noise and downstream readout. 

Kinetic parameters for T-currents were obtained from in vitro measurements in DCN cells 

[141, 143]. Deinactivation can occur within ~20-100 ms of hyperpolarization from the resting 

potential, and activation can then occur within a few milliseconds during subsequent 

depolarization (Figures 3D and 3E). Conductance densities were set to reproduce the observed 

resting potential of -58 mV and membrane time constant of ~12 ms [103, 105, 107]. 

We compared the model’s responses to forward and backward patterns of biphasic 

Purkinje cell input. In our initial studies, the forward CS-US interstimulus interval (ISI) was at 

least 200 ms, more than sufficient delay for reliable conditioning in rabbits (Figure 1B) [21]. 

Mossy fiber excitation rose during the entire CS but was insufficient to drive a rebound during 
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baseline or elevated Purkinje cell spiking. This is consistent with data supporting a key role 

for Purkinje cells in generating properly timed reflexes via the suppression of early, mossy 

fiber driven responses to the CS, which can be unveiled by blocking Purkinje cell inputs to the 

DCN [92, 155]. We found that biphasic Purkinje cell input shaped by forward training led to 

rebounds that initiated as Purkinje cell spiking transitioned from an elevated to a diminished 

rate, about tLTD prior to the expected US onset (Figure 4A, red traces). Hence, rebounds could 

drive blinks that anticipate the US. We then tested the effect of varying the ISI value. With 

backward training there was insufficient deinactivation of T-currents to generate rebounds 

(Figure 4A, blue traces). With positive ISI values <100 ms, rebounds occurred but with 

diminished amplitude, since there was insufficient time for T-channel deinactivation during 

the brief increase in Purkinje cell spiking (Figure 4A, orange trace). Thus, rebound generation 

occurred selectively for sufficiently positive ISI values and anticipated US arrival. 

We also explored the dependence of rebound generation on the graded magnitude of 

LTP and LTD at the PF-Purkinje cell synapse, as quantified through the resulting elevation 

and diminution in Purkinje cell spike rates, respectively (Figures 4B and 4C). Rebound 

generation in the DCN cell required biphasic Purkinje cell spiking, with both a sufficient 

elevation and subsequent decline in spiking needed for large amplitude rebounds (~50 mV). 

Ample levels of both LTP and LTD would thus be needed to induce sufficient biphasic 

variation in Purkinje cell spiking. These findings held across a broad range of T-channel 

densities and open the possibility that DCN cell T-currents help shape the differences in 

conditioned reflex expression following backward and forward training [21]. 

Readout mechanisms of rebound depolarization and correspondence to conditioned behavior 

If rebounds induce learned motor action, how do DCN cells convey rebound 

magnitudes via the rate of Na+ spikes sent to pre-motor areas? The graded amplitude of pure 

T-current mediated rebounds indicates these low-voltage activated events are not stereotyped 

Ca2+ spikes. Real DCN neurons do exhibit Ca2+ spikes, mediated by high-voltage activated 

Ca2+-channels, and as in other cell types dendritic Ca2+ spikes may be good triggers of somatic 

Na+ spike bursts [105, 127]. We reasoned that the amplitude of T-current mediated rebounds 

should set the likelihood of crossing the voltage threshold for Ca2+ spike generation, with 

membrane potential fluctuations influencing the degree of variability.  Smaller amplitude 

rebounds that occur with shorter ISI values would be less likely to cross the Ca2+ spike 
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threshold.  Within this framework we interpret a Ca2+ spike as the initiator of signals sent 

downstream to drive a conditioned motor response.  

To test whether this readout mechanism would be able to convert the amplitude of 

rebound depolarization into the probability of Ca2+ spike generation, we examined an 

enhanced one-compartment model that included high-voltage activated Ca2+-channels (Model 

2, Figure 3B) and membrane potential fluctuations due to stochastic arrival of synaptic inputs 

(Materials & Methods). This contrasts with Model 1, in which both synaptic inputs and 

membrane voltage followed deterministic time courses. In Model 2 a biphasic pattern of 

Purkinje cell input resulting from forward training with a long ISI value led reliably to a T-

current mediated rebound of sufficient magnitude to trigger a Ca2+ spike. These Ca2+ spikes 

were properly timed, prior to the expected US. Backward training led to small rebounds and 

virtually no Ca2+ spiking. Forward training with a short ISI value led to unreliable Ca2+ 

spiking, with the amplitude of the T-current mediated rebound being sufficient to trigger a 

Ca2+ spike on some trials but not others (Figure 5A). Thus, as the ISI value varied, the 

amplitude of T-current driven rebounds set the probability of crossing the Ca2+ spike threshold 

(Figure 5B, closed green triangles). Of prime interest, the shape of the curve describing this 

response probability as a function of the ISI closely resembles that obtained in rabbit eyeblink 

conditioning studies (Figure 5B, open red squares, diamonds, and downward-facing triangles), 

validating the plausibility of a rebound based recall mechanism. The sum of tLTD and the T-

channel inactivation time constant determine the temporal offset of the curve from the origin. 

It follows that experimental manipulations lengthening the time needed for T-channel 

deinactivation during the ISI are predicted by our theory to cause a rightward shift of the 

behavioral data curve (Discussion).  

We examined readout issues in greater depth using a two-compartment model DCN 

cell (Model 3, Figure 3C) that included a dendrite and soma, as well as channels mediating 

dendritic Ca2+ and somatic Na+ spikes (Materials & Methods). The somatic and dendritic 

compartments were only weakly coupled, which was intended to mimic the electrotonic 

isolation between the cell body and the long distal dendrites of DCN cells where T-channels 

appear to be most dense, >100 µm from the cell body [143]. This is consistent with the 

observation that Purkinje cell input triggers DCN cell rebounds much more effectively than 

somatic hyperpolarization of comparable magnitude [107]. Synaptic inputs in Model 3 arrived 

stochastically, inducing membrane potential fluctuations. As in real DCN cells, a tonic cation 
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current induced a basal rate of somatic spiking at ~25 Hz [103, 138, 147]. Simulations 

revealed that a dendritic rebound induces a Ca2+ spike, which in turn drives a corresponding 

increase in the rate of somatic Na+ spikes (Figures 5C-E). This increase represents a plausible 

signal from the DCN cell to downstream pathways for driving learned motor output 

(Figure 1A). Forward training with an ISI >100 ms virtually always led to such a spike burst. 

Na+ spike bursts occurred with lower probability under the same conditions that failed to 

produce large amplitude rebounds in Model 1, such as backward training or forward training 

with a short ISI. Across ISI values the probability of a Na+ spike burst closely matched the 

behavioral dependence of conditioned blinking on the ISI value as observed in rabbits (Figure 

5B, closed blue circles). 

Phase plane analysis of rebound generation as a robust mechanism for recall 

To explore further the basic dynamics and robustness of rebound mechanisms, we 

studied DCN neuronal dynamics using a phase plane analysis of Model 1. Prior applications 

of such analysis to other neuron types have provided considerable insight into Ca2+ spike 

generation, spike bursting, and transitions between ‘up’ and ‘down’ activity states [156-159]. 

As is common in phase plane analysis, we focused on the slow dynamical variables that set the 

relevant timescale. Here, these variables are membrane voltage, V, and the T-type channel 

inactivation variable, l. The latter has a voltage-dependent time constant of ~10-100 ms 

(Figure 3E), close to the minimum ISI for reliable memory retrieval (Figure 1B). By 

comparison, the time constant for T-current activation is ~1-10 ms, considerably faster than 

motor memory recall and rebound depolarization. Because of this separation of timescales we 

approximated T-type activation as occurring instantaneously and thus restricted to the (V, l) 

plane. Rebounds may then be viewed as trajectories in this two-dimensional (2-D) phase plane 

(Figure 6). 

Phase plane analysis of Model 1 revealed the key ingredients for rebounds. The 

analysis can best be understood by breaking a CS presentation into three stages: the initial 

resting condition, the ISI, and the remainder of the CS following the ISI (Figure 6A). During 

each stage, the system has a unique attractive fixed-point at the intersection of the V and l 

nullclines, the curves on which the time derivatives dV dt and dl dt  respectively vanish 

(Figure 6B). The three fixed-points and the ISI value are the chief determinants of the 

dynamics. At rest (stage 1), the system resides at a fixed-point location at which the T-current 
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is mainly inactivated (open black circle in Figure 6B and Movies 1 and 2). At CS onset and 

during the ISI (stage 2), mossy fiber and Purkinje cell input to the DCN cell shift the fixed-

point location to a potential at which T deinactivates (open green triangle in Figure 6B and 

Movies 1 and 2). The system approaches the stage 2 fixed-point during the ISI, starting from 

the resting position (Figure 6B; Movies 1 and 2). The ISI value determines the duration and 

proximity of the system’s approach. At ~tLTD prior to the moment of the expected US (stage 

3), Purkinje cell activity declines and the fixed-point shifts to a third location that is 

depolarized relative to rest (open red square in Figure 6B and Movies 1 and 2). This initiates a 

rebound that is well timed for driving an anticipatory reflex. More precisely, there is a family 

of trajectories that undergo rebound depolarization during stage 3, with rebound amplitude a 

strict function of the (V, l) values attained by the end of stage 2. A 2-D color map of rebound 

amplitude as a function of (V, l) reveals the basis for the sharp dependence on the ISI value 

and the stage 2 and 3 fixed-point locations (Figure 6C). In turn, these fixed-point locations 

depend critically on the degree of biphasic Purkinje cell spiking and thus on the levels of LTP 

and LTD attained during training. 

Stage 3 rebound trajectories with the greatest depolarization initiate in a neighborhood 

of the (V, l) plane that may be viewed as a memory recall ‘reliability zone’ from which a large 

rebound will occur without fail (Figure 6C, red shaded region). The level of LTP and the peak 

Purkinje cell spiking rate are important, because they determine the proximity of the stage 2 

fixed-point to the reliability zone. However, even with sufficient LTP if the ISI is too brief the 

system does not have time to reach the reliability zone during stage 2, leading to a small or no 

rebound (Figure 6C, blue shaded region; Movie 2). The rebound amplitude also hinges on the 

location of the stage 3 fixed-point, due to the dependence of T-channel activation on the 

reduction in Purkinje spike rate and the level of LTD.  

To understand the implications of these observations for a readout mechanism based 

on Ca2+ spike generation (Figure 5), using Model 2 we determined the set of stage 3 

trajectories in the (V, l) plane that lead to a Ca2+ spike (see Materials & Methods). Large 

amplitude rebounds that initiated within the reliability zone passed furthest above the spiking 

threshold (Figure 6D). Rebounds that initiated elsewhere either failed to reach or just crossed 

threshold. In the presence of membrane potential noise, this implies that if the system reaches 

the reliability zone the probability of Ca2+ spike generation is high. Much as in our two-

compartment simulations, this probability falls markedly as the ISI is shortened (Movie 3 and 
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Figure 5B). The Ca2+ spike voltage threshold does not vary much across a wide range of HVA 

Ca2+ channel density (data not shown), indicating Ca2+ spiking is a robust readout of whether 

the system has entered the recall reliability zone. Thus, the phase plane analysis illuminates 

key features of a rebound-based memory recall mechanism, including conditions for reliable 

recall. 

Role of post-inhibitory rebounds in VOR gain adaptation.  

Because cerebellar circuitry is highly conserved, rebound depolarization might serve 

multiple forms of cerebellar memory recall. For example, floccular Purkinje cells involved in 

horizontal VOR adaptation project to target cells in the vestibular nuclei that also exhibit 

significant rebound depolarization in vitro mediated by hyperpolarization-activated currents 

[160, 161]. These currents require further characterization and are expressed to varying 

degrees across MVN cell types, but as a group the MVN neurons receiving input from the 

floccular Purkinje cells exhibit exceptionally pronounced rebound burst spiking [160]. The 

currents involved seem to include the h-type cation current and probably some amount of Na+ 

and T-type Ca2+ currents [106, 161, 162]. Regardless of the current identities, the empirically 

determined time constant (~620 ms) describing the duration of hyperpolarization needed for 

maximal rebound burst firing is considerably longer than that for DCN cells (Figure 2E) 

[106]. Might rebound depolarization and the need for a long period of hyperpolarization 

underlie some of the temporal asymmetries seen in behavioral studies of VOR adaptation? 

Well known primate behavioral studies have shown that the amplitude of learned 

VOR responses depends on the relative timing of vestibular and visual stimuli in a manner 

resembling the dependence on CS-US timing in classical conditioning. Raymond and 

Lisberger repeatedly paired a vestibular stimulus, a 600 ms pulse of head rotation, with a brief 

visual stimulus consisting of moving dots [102]. The visual motion stimulus was presented at 

one of three different ISI values, a zero ISI condition analogous to backward conditioning 

(Figure 7C, left panel), a short forward ISI of 225 ms (Figure 7C, middle panel), and a long 

forward ISI of 450 ms (Figure 7C, right panel). A learned VOR response developed in all 

cases, but the response amplitude grew as the ISI lengthened. Such dependence on the ISI may 

be analogous to that seen in eyeblink conditioning. Could rebounds underlie this effect? The 

timescale of the behavioral effect is similar to that of h-current activation.  

To study the issue we created a simple, one-compartment model of an MVN cell in 
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which h-currents mediated rebounds (Figure 7B). The model is analogous to Model 1 of a 

DCN cell in that the model has only one compartment and lacks the channels responsible for 

the fast spontaneous spiking that MVN cells exhibit. The single compartment thus better 

mimics a dendrite than a soma. As before, we interpreted the rebounds as signals driving 

learned motor responses. MVN simulations used a fixed time constant, ! q , for I
h

 activation, 

as in the MVN cell model of [106].  

We used a stimulus protocol based on the Raymond-Lisberger experiments and found 

the largest rebounds arise when the visual stimulus occurs during the latter portion of the 

vestibular impulse (Figure 7E). Longer ISI values allow more time for h-currents to activate at 

hyperpolarized voltages, heightening rebound depolarization. Rebound amplitude also 

depends on biphasic Purkinje cell spiking and thus on the levels of LTP and LTD induced 

during training (data not shown). By varying ! q  over a range of values, we found that a value 

of ~400 ms generated the largest ratio of rebound amplitudes between the long ISI condition 

and the zero ISI condition (Figures 7D and 7E). This value of ~400 ms for ! q  at physiological 

temperature appears consistent with the empirical value of ~620 ms measured at 31-33°C by 

[106]. Thus, the amplitude dependence of learned eye movements on the ISI value might stem 

from variable levels of current flow through hyperpolarization-activated conductances such as 

h. However, the component of the learned response that is independent of the ISI value is 

unlikely to be driven by rebounds and is beyond the scope of our present model, which seeks 

only to account for the ISI-dependent component. 

DISCUSSION 

We have presented a lock-and-key hypothesis on how the expression of memory 

responses may undergo filtering via neurophysiological mechanisms active during memory 

retrieval. This hypothesis and our computational work exploring a candidate rebound-based 

lock-and-key mechanism were prompted by data suggesting that backward-ordered classical 

eyeblink conditioning as well as non-cerebellar forms of aversion conditioning can lead to 

latent memory storage or changes in neural activity, despite a lack of conditioned responses 

[99, 163]. The complex manner in which plasticity might evolve across a large network of 

synaptic connections throughout learning experience also suggests some constraints on motor 

memory expression might be implemented via neurophysiological mechanisms of recall [97]. 
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We explored these ideas through computational studies of two cerebellar behaviors by 

examining whether DCN and MVN cells can filter signals from Purkinje cells to influence 

response timing and prevent certain motor responses. Biophysical models of these two cell 

types that incorporate rebound channels lead to consistent explanations for behavioral data on 

cerebellar motor learning. These models make direct links between ion channel kinetics and 

memory expression, and particularly for eyeblink conditioning yield specific predictions of 

how learning performance varies as a function of the relative timing of paired training stimuli. 

Within our lock-and-key framework for these models, subjects undergo both cerebellar LTP 

and LTD regardless of whether the training stimuli were presented in forward or backward 

order. As a result, the learned sensory cue drives biphasic Purkinje cell activity. Yet, this 

biphasic activity triggers rebound depolarization in the DCN cells and drives well-timed 

classically conditioned reflexes only if the training ISI was sufficiently positive. In this way 

inappropriate motor responses to conditioned stimuli that do not precede the US sufficiently 

are avoided. Phase plane analysis reveals the basic ingredients for reliable reflex expression, 

including ample levels of both LTD and LTP. In MVN cells, rebound currents may underlie 

the variation of VOR adaptation magnitude with the relative timing of visual and vestibular 

training stimuli. Such effects hinge on the observed capabilities of both DCN and MVN cells 

for rebound depolarization. 

Electrophysiological properties of DCN neurons are consistent with the rebound theory 

In vitro studies of DCN cells have found that rebounds occur in both cerebellar slice 

and isolated cerebellum-brain stem preparations [103, 105, 107, 127]. MVN neurons also 

undergo rebounds in vitro, but there is more uncertainty about the channels involved [106, 

164]. There is also indirect physiological and pharmacological evidence DCN cells rebound in 

vivo [147, 165], including for a class of neurons with blink-related activity [166]. Input from a 

single Purkinje cell induces a large conductance change in the DCN cell [167], which is  

sufficient to allow a modest post-inhibitory rebound and increase in Na+ spike rate 

(M. Molineux, personal communication). Multiple Purkinje cells might drive larger rebounds 

and spike bursts in concert, such as through coordinated Purkinje cell spiking [168, 169]. The 

anatomical convergence of many hundreds of Purkinje cells onto each DCN neuron implies 

that the aggregate activity of a population of Purkinje cells influences DCN cell activity. 

The in vivo extracellular recordings performed to date of DCN neurons during 
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classical conditioning do not provide strong evidence either for or against our rebound theory. 

Single-unit and multi-unit recordings both reveal an increase in DCN spiking rate that 

precedes motor output [9, 170-173]. By comparison, evidence for a pause in spiking during 

early portions of the ISI is limited. Berthier and Moore reported some cells with reduced 

spiking at the beginning of the CS, although this pattern is not apparent in all single unit 

recordings [170, 171]. Multi-unit recordings of DCN cell activity do not exhibit a pause, but 

these recordings may not provide sufficient sensitivity to reveal a partial reduction in spiking 

within a sub-population of recorded neurons [9, 172, 173]. Irrespective of these results, the 

rebound model does not make a strong prediction concerning DCN firing during early 

portions of the CS. During the early portion of the ISI, DCN neuron spiking might remain 

virtually unchanged despite increased Purkinje input, due to the dendritic location of most 

Purkinje synapses and T-type channels (Figure 5). Technically difficult in vivo intracellular 

recordings would be required to determine how sub-threshold responses in DCN cells develop 

during conditioning. 

Experimental predictions for studies of cerebellum-dependent motor learning 

The lock-and-key hypothesis leads to a clear prediction that is testable independent of 

whether rebound depolarization provides a lock mechanism: Classical conditioning with a 

short (<100 ms) or backward CS-US interval should lead to plasticity in the cerebellar cortex 

despite the lack of reflex acquisition. Several experimental tests of this prediction are possible. 

Second-order classical conditioning, which can induce expression of previously latent first-

order conditioning, might be useful for demonstrating explicitly that a memory of backward 

conditioning is formed [99]. Alternatively, studies of backward eyeblink conditioning using 

human brain imaging techniques might be capable of revealing plasticity related effects 

(Cheng et al., Soc Neurosci Abstr, Program No. 204.13, 2007). Electrophysiological 

recordings of Purkinje cell spiking during reflex conditioning in decerebrate ferrets and guinea 

pigs have revealed changes in spiking patterns in response to forward training [174, 175], and 

thus might be used to examine the effects of backward or short interval conditioning. 

Recordings from rabbit Purkinje cells, but not DCN cells, were reported to show changes in 

activity patterns following backward US-CS pairings [163]. This lends support to the lock-

and-key hypothesis, but more experimental data is still needed. 

Several other testable predictions emerge from our modeling of rebound dynamics 
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during memory recall. Removal or blockade of DCN cell rebound conductances should hinder 

expression of conditioned blinks. To test this idea, T-channel blockers might be used to 

prevent rebounds in trained subjects [176, 177]. Failure to impair conditioned blinks would 

cast serious doubt on our proposed rebound mechanism. A related test might be performed in 

trained animals during recordings of DCN cells that drive conditioned responses. Transient 

depolarization of these cells during the ISI in trained animals should prevent or diminish 

blink-related spiking activity by thwarting T-channel deinactivation. Although perturbation of 

one cell seems unlikely to disrupt the blink itself, stimulation of many DCN cells might have 

such an effect.  

A corollary to this logic concerns inhibition of olivary cells by projections from 

GABAergic DCN cells that also receive Purkinje cell inputs and exhibit rebounds [178, 179]. 

These connections appear critical for extinction of conditioned reflexes following unpaired CS 

presentations [180]. Thus, blockade of rebound channels should hinder both expression and 

extinction of conditioned reflexes. A caveat is that rebound channel blockers or electrical 

stimulation applied to the DCN might alter climbing fiber input to the cerebellum through 

nucleo-olivary inhibitory feedback [181, 182]. To dissociate the role of rebounds in excitatory 

versus inhibitory DCN neurons might require genetic tools for cell-type specific manipulation, 

such as optogenetic techniques [183]. 

Another prediction of the rebound theory is that blink-related Purkinje cells should 

exhibit, in the aggregate, biphasic patterns of CS-driven activity in conditioned subjects. This 

contrasts with Albus’s proposal that GABAergic Purkinje cells should drive DCN cells 

through disinhibition [12]. The recordings made to date of the spiking activity of individual 

Purkinje neurons in trained animals have revealed a diversity of spiking patterns in response to 

the CS [134, 163, 174, 175, 184-186]. Although multiple regions of cerebellar cortex have 

been implicated in eyeblink conditioning, most studies of Purkinje cell activity in classical 

conditioning have focused on a subset of these areas.  

Recordings of Purkinje cell activity in trained rabbits from the cerebellar anterior lobe 

[184] and cerebellar lobule HVI [134, 163], both areas implicated in eyeblink conditioning, 

have revealed a mixture of activity increases and decreases in response to the CS. Excitatory 

responses might occur earlier in the ISI, with activity decreases occurring later [184]. 

Recordings from lobule HVI in decerebrate guinea pigs and ferrets have also revealed a 

mixture of responses [174, 185]. One particularly careful study, in which Purkinje cells were 
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first identified as being responsive to the US prior to training, reported mainly decreases in 

Purkinje cell spiking in response to the CS after training [174]. However, this study also 

mentions that after training some cells undergo an increase in firing during the first 50-100 ms 

of the CS, followed by an abrupt drop in spiking. Overall, Purkinje cell recordings in trained 

animals are mainly consistent with the rebound theory but do not provide sufficient evidence 

to validate the prediction that aggregate Purkinje cell activity should be biphasic. Given the 

central role in the theory of such biphasic aggregate responses, it seems important that future 

studies testing this prediction should record from multiple Purkinje cells concurrently using 

multi-electrode techniques.  

If rebounds are instrumental in driving classically conditioned responses, the timing of 

training stimuli needed for successful conditioning should depend on rebound channel 

kinetics. Because the minimum ISI that leads to rebounds is set by the sum of the inactivation 

time constant and tLTD, an increase in the inactivation time constant should increase the 

minimum ISI for successful training. Likewise, slowing the kinetics of hyperpolarization-

activated currents in MVN cells should increase the interval required between vestibular and 

visual inputs needed to generate the greatest changes in VOR gain. 

Further predictions of the rebound theory concern classically conditioned subjects in 

which cerebellar LTD or LTP is impaired. Elimination of both LTD and LTP would prevent 

biphasic patterns of Purkinje cell spiking, precluding rebounds. Our simulations also suggest 

that if either LTP or LTD is partially impaired, rebound amplitude decreases and sporadically 

triggers readout by Ca2+ or Na+ spikes (data not shown). However, rebound driven spiking 

remains well timed when it occurs. Thus, some animals partially deficient in LTD or LTP 

might exhibit conditioned responses sporadically or of diminished amplitude, but with proper 

timing. Greater disruptions of cerebellar plasticity would disrupt response timing due to 

insufficient biphasic modulation of Purkinje cell spiking.  

To date, several groups have studied eyeblink conditioning in mice with disrupted 

cerebellar LTD. Four strains of such mice exhibited blinks that occurred sporadically or with 

altered amplitude, but with the same distribution of time courses as wild-type mice [119, 121-

123]. It was reported that mice expressing a protein kinase C inhibitor that impaired LTD had 

ill-timed residual blinks [120]. However, questions have been raised about this study 

regarding the degree to which motor learning was cerebellar in origin [120, 174, 187]. It is 

possible PKC inhibition disrupts more than just LTD. Although further study is needed, the 
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former four strains seem consistent with the rebound theory and suggest normal LTD levels 

might be unnecessary for normally timed responses.  

Comparison to other work on the role of rebounds in cerebellar function 

Several other authors have considered a potential role for DCN cell rebounds in 

cerebellar network function. Inspired by the observation that Purkinje cell activity effectively 

triggers rebounds in vitro [107], Kistler and de Zeeuw created computational models 

emphasizing a potential role for rebounds in reverberatory olivo-cerebellar network activity 

through which Purkinje cells can affect their own subsequent activity and timed motor 

responses [188]. In experiments on classically conditioned decerebrate cats, Hesslow noted 

that brief electrical stimulation of the cerebellar cortex leads to a delayed activation of muscle 

fibers as assessed by electromyography [165, 189]. This finding was explained as arising from 

post-inhibitory rebound depolarization in the DCN and supports a basic assumption 

underlying our models, namely that rebound driven DCN cell activity can trigger motor 

action.  

Aizenman and Linden have found that DCN cell rebound depolarization and the 

associated spike burst are important for determining the polarity of gain changes at the 

Purkinje cell to DCN cell synapse (Aizenman and Linden, 1998). Mauk and collaborators 

have performed extensive network modeling studies of cerebellar learning and have suggested 

that the rise in intracellular Ca2+ due to DCN cell rebounds might be a potent trigger for 

plasticity at the mossy fiber to DCN cell synapse [85, 124]. A recent experimental study has 

demonstrated this effect, confirming the importance of post-inhibitory rebound current for 

potentiation of mossy fiber to DCN cell synapses [190]. However, in the original simulations 

the inefficacy of brief ISI values for classical conditioning arises from a minimum time 

interval for synchronization of granule cell activity following the CS, rather than from a 

rebound based mechanism [85]. For ISI values shorter than the minimum for granule cell 

synchronization, plasticity in the cerebellar cortex is precluded. By comparison, our lock-and-

key hypothesis is based on the supposition of at least some plasticity occurring with brief 

forward or backward ISI values.  

A non-synaptic form of plasticity capable of increasing the intrinsic excitability of 

DCN and MVN neurons appears suited to raise the propensity for rebounds over the course of 

training. Bursts of synaptic input can induce DCN and MVN cells to display long-lasting 
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gains in excitability due to increases in the maximum rebound current [162, 191, 192]. A 

biphasic burst-and-pause pattern of Purkinje cell activity may be optimally suited to induce 

this increase [124, 190, 191]. Thus, rebound generation might be facilitated during training, 

perhaps reducing the number of Purkinje inputs needed to drive motor action. Overall, 

multiple cerebellar plasticity mechanisms in addition to those invoked here at the PF-Purkinje 

synapse are likely to occur during motor training and to shape both cerebellar dynamics and 

motor learning in a cooperative fashion [85, 88, 90, 91, 124, 193, 194]. Collectively, the 

existing experimental data are not only consistent with our computational models but also 

reach well beyond, suggesting that rebound currents have multiple functions additional to the 

temporal filtering role explored here. 

A role for rebounds in temporal shaping of learned responses 

A longstanding debate has concerned the issue of whether cerebellar-mediated 

memory storage occurs within the cerebellar cortex, or within the deep cerebellar or vestibular 

nuclei [95, 113]. Consistent with the identification of multiple plasticity mechanisms in vitro, 

recent in vivo studies indicate both the cortex and the nuclei have a role in memory storage, 

but with distinct kinetics for plasticity induction and with distinct roles in setting the timing of 

motor expression [92, 124, 155, 195, 196]. In both eyeblink conditioning and ocular reflex 

adaptation, shortly after the start of training motor memory is susceptible to extinction and is 

impaired by lesion or pharmacological disconnection of the cerebellar cortex. After a few 

days, motor memories are more resistant to extinction and can persist without Purkinje cell 

involvement [92, 155, 195, 196]. 

However, even long after training, Purkinje cells appear important for setting the 

proper timing of learned responses. In eyeblink conditioning, disconnection of Purkinje cells’ 

projections to the DCN leads to ill-timed, short-latency blink responses to the CS [92, 155]. 

These short-latency blinks probably arise because without inhibitory input from Purkinje cells, 

DCN cells  may be driven strongly by mossy fiber inputs starting from the onset of the CS. 

For VOR adaptation, the relative contributions of the flocullar Purkinje cells and the MVN 

neurons in shaping the temporal character of the learned motor response remain less clear. Our 

interpretation of the available data is that for VOR adaptation, a baseline component of the 

learned motor response that is not as sensitive to the relative timing of vestibular and visual 

training stimuli arises from mossy fiber driven activity in the MVN (Figure 7C). However, 
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there also appears to be another component that is sensitive to the relative timing of the 

training stimuli [102], and it is this second component that we propose has the proper form 

and kinetics to be explained by a rebound based mechanism using a slow, hyperpolarization-

activated current (Figure 7E), such as that identified by [106]. Unlike eyeblink conditioning, 

for which there is no learned response with short ISI values, there is VOR adaptation 

following short interval training, but at reduced amplitude relative to adaptation at longer ISI 

values [102]. Thus, rebound mechanisms cannot account quantitatively for the full magnitude 

of VOR adaptation.  

Generalizations of the proposed rebound mechanism 

Our simulations involved specific choices of cellular parameters, but the ideas 

presented here on rebounds may have explanatory power surpassing that of our detailed 

models. One aspect of generality concerns the channels that mediate rebounds. It was first 

thought mainly T-type channels drive DCN cell rebounds, but new evidence also suggests a 

role for Na+ currents (Sangrey and Jaeger, Soc Neurosci Abstr, Program No. 179.10, 2005). 

Further, rebound amplitude or kinetics may vary between individual DCN neurons due to 

differential expression of T-channel isoforms [197]. Identities of the rebound channels in 

MVN cells are still in question, but in addition to the h-type current there is evidence Na+ and 

low-voltage activated Ca2+ currents play a role [106, 161]. Further characterization of rebound 

channels may be important for understanding the precise timing relations seen in behavioral 

studies. However, the basic idea that rebounds shape temporally asymmetric behavioral 

responses is general and may apply to other cerebellum-dependent learning paradigms. For 

example, learned aspects of smooth visual pursuit exhibit temporal dependencies on the ~200 

ms scale that might reflect requirements for rebound generation in cells of the cerebellar 

caudal fastigial nucleus [198].  

Role of synaptic plasticity in memory formation and recall. 

A prevalent view holds that LTD and LTP are opposing mechanisms, with one 

encoding memories and the other erasing [126, 129, 132]. We  are proposing a different view, 

in which both cerebellar LTD and LTP are needed for reliable recall. The lock mechanism 

based on rebound depolarization enforces the requirement for forward training, but 

nevertheless both LTD and LTP are induced during forward and backward training.  
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In our lock-and-key framework, backward conditioning and forward training at short 

intervals induces synaptic plasticity at parallel fiber to Purkinje cell synapses, despite the 

absence of behavioral output. In this respect, our work follows several prior models of 

cerebellar-mediated learning in which neuronal plasticity can occur without any change in 

motor behavior. Models of learning with two or more stages have been proposed for eyeblink 

conditioning [85], VOR adaptation [95] and other motor behaviors (Smith et al. 2006). These 

models involve an intermediate stage of learning during which plasticity has occurred but 

learning is not yet expressed. More generally, any model of learning with two or more serial 

stages of plasticity inherently implies the possible existence of plasticity without expression of 

learning. We also present a two-stage model, but here the second stage of processing is 

implemented as temporal filtering occurring at memory recall rather than as plasticity 

occurring during memory formation. As with prior two-stage models of plasticity, our model 

also predicts the possibility of plasticity without behavior modification. 

The idea of rebound generation as a temporal filter pertains to the ongoing debate 

about mechanisms that shape the dependence of classically conditioned responses on the CS-

US ISI (Figure 1B). Ideas from recent studies on synaptic plasticity and animal behavior have 

suggested conflicting explanations. Some authors have suggested spike-timing dependent 

plasticity can account for the variation in performance with the ISI value [130]. A timing-

dependent plasticity rule in which PF activity preceding CF activity is optimal for LTD 

induction does create a distinction between backward and forward training (Figure 2). 

However, the recent and older experimental data show that LTD can occur with forward or 

backward timing protocols (Figure 2A) [112, 130, 199], so another mechanism auxiliary to 

LTD seems needed to create conditioned reflexes selectively following forward but not 

backward training.  Our model incorporates spike-timing dependent plasticity, and tLTD is a 

key factor that causes the conditioned response to precede the expected US. However, it is 

rebound generation that precludes learned responses following backward training. In a sense, a 

memory of backward training is formed in the resulting patterns of LTD and LTP, but this 

memory is not retrieved in response to the CS.  

This statement of the lock-and-key hypothesis fits well with studies of classical 

aversion conditioning, which have shown backward training leads to an associative memory of 

the US-CS pairing [200]. CS presentation alone does not yield conditioned motor responses, 

but the associative memory can be demonstrated through second-order conditioning [99]. 
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Thus, at least for this form of aversion conditioning, mediated outside the cerebellum, the 

lock-and-key hypothesis appears to be correct. What mechanism prevents the stored memory 

from yielding a response to the CS? For aversion conditioning the answer remains unknown, 

but our study points to rebound depolarization as a candidate mechanism by which such 

behavioral filtering might occur for cerebellum-dependent behaviors. 

An algorithmic lock-and-key description of memory retrieval 

In sensory neuroscience, filters have been fruitfully used to describe receptive fields 

and spiking behavior in an algorithmic manner, apart from physiological details. Our study 

suggests an algorithmic lock-and-key description of cerebellar memory recall (Figure 8). The 

‘lock’ resides in the DCN or MVN as a temporal filter that requires specific ‘key’ input 

activity to drive rebound spiking and a motor response. The key is the biphasic pattern of 

Purkinje cell activity that is shaped by training and driven by a learned sensory cue. Synaptic 

plasticity does not lead to learned responses unless key activity is shaped to match the 

temporal filter of the lock (Figures 8A and 8B). Backward training induces plasticity, but the 

resulting key activity does not fit the lock, precluding conditioned responses.  

We found that a simple linear-nonlinear (L-N) filter model, inspired by those used to 

describe visual receptive fields [201, 202], can accurately predict the responses of our 

biophysical models and the behavioral dependence of learned responses on ISI (Figures 8C-

E). Thus, from an algorithmic standpoint memory retrieval may involve a temporal filter that 

excludes certain behaviors and allows others. 

The lock-and-key model of recall might be adaptable to other non-declarative forms 

of memory involving feed-forward networks. Striatal memory for motor sequences shows 

promising similarities, since both Purkinje cells and striatal medium spiny neurons receive 

diverse sensory information, undergo bi-directional plasticity, and are GABAergic projection 

neurons that trigger motor sequences [203]. The similarity between these two GABAergic cell 

types extends also to their respective targets, for there is one class of striatal target neuron in 

the globus pallidum that is spontaneously active, has a baseline membrane potential of about –

60 mV, and reliably undergoes post-inhibitory rebound depolarization in response to electrical 

stimulation of striatal input fibers [204]. By analogy, cortico-striatal plasticity alone may not 

represent a memory, since select patterns of striatal input activity to the globus pallidum may 

be needed to unlock motor expression. These ideas challenge classical theories of memory 
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storage that focus almost exclusively on neuronal plasticity but avoid mention of how retrieval 

dynamics may help shape memory expression.  

Neuroscientists have long sought the location and substance of memories. This quest 

led to the notion of the engram, the physical unit of memory, and to the later idea that changes 

in synaptic strength are a candidate substrate for memory [205, 206]. Cognitive scientists have 

countered that synaptic plasticity alone does not account for the complex phenomenology of 

memory recall [207, 208]. In this opposing view, a memory is a physical dynamic that occurs 

exclusively at recall. Plasticity may help shape this dynamic, but is not by itself a memory. 

Our computational models provide concrete examples in which it is difficult to identify any 

physically localized engram. Would the engram include the synapses that have undergone 

plasticity, the key activity that triggers a memory, the activity unlocked at a rebound, or all of 

the above? By itself plasticity seems a poor candidate for a complete engram, since it is 

insufficient to allow recall. Questions regarding the physical substance of memory may be 

misleading, neglecting that recall occurs due to a sequence of events culminating in a specific 

form of neural dynamics. This caveat regarding the substance of memory in our models might 

also apply broadly to multiple memory systems. 

FIGURES 

 

Figure 1. Neural pathways and stimulus timing requirements for eyeblink conditioning. 

(A) Neural pathways involved in delay eyeblink conditioning. Cerebellar climbing fibers 

(CFs) originate in the inferior olive (IO) and convey activity driven by the unconditioned 

stimulus (US). Mossy fibers (MF) originate in the pons and convey activity driven by the 
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conditioned stimulus (CS). The Golgi (Go) and granule (Gr) cell network processes the CS-

driven signals. Purkinje (Pkj) cells receive synaptic inputs from parallel fiber (PF) axons of Gr 

cells. Pkj cells send GABAergic projections to neurons in the deep cerebellar nuclei (DCN) 

that drive conditioned motor responses via the red nucleus (RN).  

(B) The reliability of conditioned responses to a CS in trained rabbits, as a function of the CS-

US interstimulus interval used in training. Data were collected from classic studies of ([108] 

solid black line and black squares), ([109] dotted blue line and blue diamonds), ([110] solid 

red line and red triangles), and ([111] dotted green line and green circles). 
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Figure 2. Cerebellar memory formation based on temporally sparse granule cell coding 

and bi-directional plasticity at the PF-Purkinje cell synapse. 

(A) The relative timing of PF and CF activation sets the propensity towards LTD or LTP. 

Maximal LTD induction arises when PF activity precedes CF activity by up to a time, tLTD , of 

~75 ms, but LTD can also occur when CF activity slightly precedes PF activity [129, 130].    

(B) In classical eyeblink conditioning, individual PFs are assumed to exhibit elevated activity 
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during only a brief portion of the CS. By the plasticity rule in A, some PF inputs will be 

strengthened and others depressed, depending on the relative timing of PF and US-driven CF 

activity. DCN cells receive input from populations of Purkinje cells whose activity reflects 

aggregate input from CS-activated PFs.   

(C) Repeated CS-US training (upper panels) leads to biphasic CS-driven Purkinje cell spiking 

due to the bi-directional plasticity shown in B. In subjects that received forward training 

(lower left), spiking rises and then falls relative to baseline (red curve). In subjects that 

received backward training (lower right), spiking falls and then rises (blue curve). The red 

arrows (lower left) correspond to tLTD. 

 

Figure 3.  Compartmental modeling of T-type Ca2+ current rebounds in DCN cells.  

Compartmental simulations of a Purkinje target neuron in the DCN involved three models of 

increasing complexity.  

(A) Model 1 has one electrical compartment, contains T (gT) and leak (gL) conductances, and 

receives glutamatergic mossy fiber and GABAergic Purkinje cell inputs. Membrane voltage 

follows a deterministic time course. 
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(B) Model 2 adds high-voltage activated Ca2+ (gHVA) channels. Synaptic inputs arrive 

stochastically, leading to membrane potential fluctuations and non-deterministic dynamics. 

(C) Model 3 has dendritic and somatic compartments, coupled by a conductance, gc. Synaptic 

inputs are localized to the dendrite, approximating empirical findings. The soma has fast Na+ 

(gNa) and delayed rectifier K+ (gKv) conductances. Both compartments have leak, T, SK, and 

HVA Ca2+ conductances. Synaptic inputs arrive stochastically, leading to non-deterministic 

dynamics. 

(D) Voltage dependence of the activation (dashed red curve) and inactivation (solid blue 

curve) gating variables for the T-type conductance in DCN neurons. At the resting potential 

(about –58 mV, dashed vertical line), T-currents are largely inactivated. Hyperpolarization 

deinactivates T-currents, allowing activation during subsequent depolarization.  

(E) Voltage dependence of the T-channel activation (dashed red curve) and inactivation (solid 

blue curve) time constants. Parameter dependencies in D and E are based on [141, 143]. 

 

Figure 4.  DCN cell rebounds require a minimum CS-US interstimulus interval and 

sufficient expression of cerebellar LTP and LTD. 
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(A) The time course of CS-driven depolarization in Model 1 (Figure 3A). If prior training 

involved a sufficiently positive ISI, the CS-driven rebound is of large amplitude and occurs at 

a time ~tLTD before the expected US (red traces). If training involved an insufficient ISI value, 

CS-driven rebounds do not occur (blue traces). For short ISI values, rebounds are diminished 

in amplitude (orange trace). The color bar indicates the ISI values, which are also marked 

above the graph with the color corresponding arrowheads for each voltage trace. Rebounds 

occur prior to the expected US, indicating anticipatory responses.  

(B) Rebound amplitude varies with the degree to which the CS drives biphasic Purkinje cell 

activity. This, in turn, depends on having sufficient expression of both PF-Purkinje cell LTP 

and LTD (Figure 2). Driving a large amplitude rebound in the DCN cell requires that during 

the first phase of biphasic activity the Purkinje cell spiking rate rises well above the 

spontaneous frequency of 40 Hz. The three voltage traces (blue, cyan, red traces) in panel B1 

occurred with the color corresponding, Purkinje cell peak spiking rates shown in B2. Lower 

peak spiking rates reflect lower expression levels of LTP. The arrowhead indicates the ISI 

value of 200 ms.  

(C) Driving a large amplitude rebound in the DCN cell also requires that during the second 

phase of biphasic activity the Purkinje cell spiking frequency drops below the 40 Hz 

spontaneous rate. The three voltage traces in panel C1 (blue, cyan, red) were created using the 

color corresponding, Purkinje cell minimum spiking rates shown in C2. The higher rates 

reflect lesser degrees of LTD. The arrowhead indicates the ISI value of 200 ms. 
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Figure 5.  Readout of rebounds via Ca2+ spikes leads to a dependence of the response 

reliability on the CS-US interstimulus interval.  

(A) Sample voltage traces during CS presentation in Model 2 (Figure 3B) in the presence of 

membrane potential fluctuations from noisy synaptic inputs. At an intermediate ISI of 100 ms, 

a T-current mediated rebound depolarization triggers a Ca2+ spike during one trial (dashed red 

line) but not another (solid blue line). 

(B) The reliability of learned responses in Model 2 (closed green triangles) and Model 3 

(closed blue circles), defined as the probability of generating a dendritic Ca2+ spike in 

response to a test CS, plotted as a function of the ISI. Classic data on the reliability of 

conditioned blinks in trained rabbits are re-plotted from Figure 1 (open red symbols) [108-

110], showing the similarity to the model data. A tLTD of 75 ms was used for the model data, 

which is consistent with empirical data indicating tLTD is in the ~50-200 ms range [130].  

(C, D) Example voltage traces from the dendritic and somatic compartments of Model 3 

(Figure 3C) during CS presentation with an ISI of 200 ms. A T-mediated rebound 

depolarization leads to a high-voltage activated dendritic Ca2+ spike (C) that drives a rise in 

the somatic Na+ spike rate (D). 

(E) The corresponding time courses of the activation (n, solid red curve) and inactivation (l, 
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dashed blue curve) gating variables during the Ca2+ spike.  

 

Figure 6.  Phase plane analysis of CS-driven rebounds.  

(A) Membrane voltage time course (blue curve) in response to a CS that initiates at time t=0 in 

Model 1, under the approximation of instantaneous relaxation of the T-channel activation 

variable to its asymptotic value. The rebound peaks at a time ~40 ms prior to the expected US 

at 200 ms after CS onset. Dashed vertical lines delineate three stages of the phase plane 

trajectory in B. 

(B) The state trajectory (blue curve) in the 2-D phase plane defined by the voltage (V) and T-

type inactivation variable (l), corresponding to the voltage trace in A. The open black circle 

marks the fixed-point in the resting state (stage 1). The open green triangle marks the fixed-

point from CS onset until ~tLTD prior to the expected US (stage 2). The open red square marks 

the fixed-point during the remainder of the CS (stage 3). According to longstanding 

convention, channels are completely inactivated when l equals zero [209]. 

(C) A color plot conveying the amplitude of the rebound that occurs during stage 3 for the 

state trajectory passing through each point in the phase plane of B and converging towards the 
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stage 3 fixed-point (open red square). Warmer hues indicate the larger rebounds (color bar) 

that initiate if during stage 2 the system has successfully entered the ‘memory reliability zone’ 

near the stage 2 fixed-point (open green triangle). White curves are example state trajectories.  

(D) The addition of high-voltage activated (HVA) Ca2+ channels to the phase plane analysis of 

C reveals those stage 3 trajectories that lead to a Ca2+ spike (red trajectories) and those that do 

not (blue trajectories). All of the trajectories closely concur with those in Model 1 (panel C) in 

the voltage range V < –35 mV over which the HVA Ca2+ channels are largely closed. The red 

trajectories, which initiate within the reliability zone near the stage 2 fixed-point (green 

triangle), cross the Ca2+ spike threshold and allow successful readout of the rebound (Figures 

5A and 5B). Horizontal dotted lines indicate the resting potential of –58 mV in A-D. Solid and 

dashed black curves in B, C, and D are nullclines during the resting state for the l and V 

variables, respectively, on which the time derivatives dl dt  and dV dt  respectively vanish 

during stage 1. 

 

Figure 7.  Vestibular nuclei cell rebounds lead to temporally asymmetric VOR 

adaptation.  

(A) Vestibulo-cerebellar pathways for VOR horizontal gain adaptation involve Purkinje cells 

(Pkj) that project to target neurons within the medial vestibular nucleus (MVN). Neurons in 

the MVN project to brainstem motor nuclei (MN) that drive eye movement. Slip of the visual 

scene on the retina is conveyed to the cerebellum via climbing fibers (CFs). Information about 
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head velocity arrives via mossy fibers (MFs) originating in the vestibular ganglia (VG), is 

processed within the Golgi (Go) and granule (Gr) cell network, and reaches Purkinje cells by 

way of parallel fibers (PFs). Conjunctive arrival of CF and PF signals is thought to induce 

synaptic plasticity at the PF-Pkj synapse that underlies gain adaptation.  

(B) A one-compartment model of an MVN Purkinje target neuron that contains h- (gh) and 

leak (gL) conductances and receives glutamatergic mossy fiber and GABAergic Purkinje cell 

input. Membrane voltage follows a deterministic time course. 

(C) Primate behavioral data from well-known studies in which pulses of head rotation (top 

panel, black bars) were paired during training with moving dot visual stimuli (top panel, grey 

bars) at three distinct interstimulus intervals. During later testing with pulsed head rotations in 

the dark, the learned component of VOR expression increased markedly with greater ISI 

values (bottom panel, green, blue, and red curves) [102].  

(D) Relative rebound amplitude as a function of the h-current activation time constant, ! q . 

The plot shows the maximum depolarization from the resting potential following training with 

zero (green), short (blue), and long (red) ISIs, normalized for each value of ! q  by the 

maximum depolarization of the zero-ISI trajectory (green). Dashed black line indicates ! q of 

400 ms used for simulations shown in panel E. 

(E) Voltage traces (top panels) and state trajectories (bottom panels) from the model MVN 

cell in response to a test pulse of head rotation following training with the three different ISI 

values shown in C. The three state trajectories (bottom panels) traverse the 2-D phase plane 

defined by the voltage, V, and the activation level of the h-current relative to that at rest, h. 

Horizontal dashed lines in the top panels indicate the resting potential of –58 mV. The solid 

and dashed black curves in the bottom panels are the nullclines during the resting state for V 

and h, respectively, on which their respective time derivatives vanish. Vertical dashed lines in 

panels C and E mark the period of head rotation. 
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Figure 8. A lock-and-key description of memory recall. 

(A) Schematic of memory formation within the lock-and-key description. Paired PF and CF 

activity induce synaptic plasticity in the cerebellar cortex. This shapes Purkinje cell ‘key’ 

activity in response to subsequent presentations of the learned sensory input.  

(B) Schematic of memory recall, in which the lock resides in the DCN. Key activity driven by 

learned sensory input is sent to the DCN via Purkinje cell axons. Not all keys will be 

successful at driving DCN cell activity and learned motor responses. The lock prevents 

inappropriate motor responses by filtering out non-matching key activity. Partially matching 
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key activity leads to unreliable recall or responses of diminished amplitude. 

(C) An implementation of a lock-and-key mechanism using a linear-nonlinear (L-N) filter 

model, similar to those used to describe sensory receptive fields. Key activity, K (t), that is 

input to the lock passes through a linear filter, F (t), and then a nonlinear threshold function, G 

(x).  

(D) The L-N model enables responses, equal to G (K (t) ∗ F (t)), to be made selectively to only 

those keys, K (t), that are shaped by training with sufficiently positive interstimulus interval 

(ISI) values. 

(E) Response of the L-N model as a function of ISI in eyeblink conditioning. The results 

mimic those of DCN cell simulations (Figures 4-6) and the classic rabbit behavioral data 

(Figures 1B and 5B). 

MOVIES 

Movies 1, 2 and 3 are available from the Journal of Neurophysiology at 

http://jn.physiology.org/ 



 

 74 

Chapter 3: High-speed, miniaturized fluorescence microscopy in 

freely moving mice 

ABSTRACT 

A central goal in biomedicine is to explain organismic behavior in terms of 

causal cellular processes. However, concurrent observation of mammalian 

behavior and underlying cellular dynamics has been a longstanding challenge. 

We describe miniaturized (1.1 g) epi-fluorescence microscopy for cellular-level 

brain imaging in freely moving mice and applications to imaging 

microcirculation and neuronal Ca2+-dynamics. 

Since the invention of compound optical microscopy, an ongoing pursuit has been the 

development of increasingly versatile intravital microscopes for observing live cell dynamics, 

ideally in behaving organisms. In mammals, achieving this ideal has been elusive due to the 

difficulties of microscopy in active animals. Among mammalian species, the mouse is the 

preeminent genetic model for targeted manipulation of cellular properties. Thus, innovation of 

microscopes for use in active mice holds particular importance due to potential for combining 

genetic manipulations with cellular-level observations during animal behavior. 

Prior investigations have exploited flexible fiber-optics to study behaving mammals, 

including mice [210-212], but these involved monitoring of bulk parameters rather than 

imaging [211, 212], or epi-fluorescence [210, 213] or reflectance [214] imaging at resolutions 

too coarse to resolve individual cells. One pioneering study demonstrated fiber-scanning two-

photon microscopy in freely moving rats [215]; however, except when the animals were still, 

imaging suffered from motion artifacts and did not allow measurements of cellular dynamics 

during active behavior. These artifacts arise due to slow (~2 Hz) rates of frame-acquisition 

during fiber-scanning, movement-induced distortions to scanning patterns, and brain 

displacements relative to the focal plane. Head-fixation of alert animals reduces motion 

artifacts and permits use of conventional instrumentation but precludes many animal behaviors 

[28] (Nimmerjahn et al., Society for Neuroscience abstracts, 2007). 

We describe an epi-fluorescence microscope (1.1 g mass) that can be carried by an 
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adult mouse and allows high-speed cellular imaging (≤ 100 Hz) during active behavior 

(Figure 1a,b). Penetration depths into tissue using epi-fluorescence are inferior to those of 

two-photon imaging, but we reasoned that the faster frame rates, lack of scanning, and greater 

depth of field of epi-fluorescence imaging would reduce motion artifacts. Epi-fluorescence 

microscopy can also address broader fields of view, since miniaturized scanners for portable 

two-photon imaging generally have limited range [216]. Further, some questions about deep 

tissues are addressable via epi-fluorescence, by labeling neurons with deep somata but 

superficial dendrites [213], or insertion into tissue of micro-optical objectives [216].  

Our microscope has fiber- and micro-optics for light transmission and miniaturized 

gears for focusing (Figure 1 and Figure 5a). There are three microlenses, a 1-mm-diameter 

gradient refractive index (GRIN) objective, a 2-mm-diameter GRIN focusing lens, and a 2-

mm-diameter coupling lens that projects an image of the specimen onto a dense bundle of 

optical fibers (Figure 1c). We designed two objective versions, a longer, needle-like objective 

(6.2 mm long) for imaging in deep tissues (Figure 1a), and a shorter (1.4 mm) version for 

superficial tissues. 

Light propagates bi-directionally in the fiber bundle, which delivers illumination and 

transmits images (240-370 µm diameter; ~2.8-3.9 µm lateral resolution) to a camera 

(Figure 1d). To relieve torsional strain within the bundle as the mouse behaves, the bundle 

rotates freely within a commutator, allowing the animal to move without significant 

resistance. Thus, captured image sequences exhibit rotations that depend on the mouse’s 

actions. We used an encoder to track the bundle’s rotations (Figure 1d). Based on the encoder 

data and an image registration algorithm, we computationally realigned stable records of brain 

dynamics (Figure 1e and Figure 5b). 

As an initial test we studied microcirculation in the neocortex (n = 4 mice) and CA1 

hippocampal area (n = 8), using the short and long objective, respectively. Prior studies 

visualized microcirculation in these tissues in anesthetized animals [217, 218]. After fixation 

of the microscope onto the cranium and intravascular injection of fluorescein-dextran dye, we 

began imaging while animals were anesthetized. Erythrocytes appeared dark against the 

brightly labeled blood plasma [217, 218]. Image-acquisition at rates ≤ 100 Hz permitted 

observations of single erythrocytes. We then allowed the mice to awake and resume active 

behavior. We again performed high-speed imaging, often with the mice running vigorously. 

After data realignment, erythrocyte flow was readily evident (Figure 2a). Few motion artifacts 



 

 76 

were apparent, generally < 2 µm of sporadic lateral displacement (Figure 5c). The microscope 

has ~10 µm depth of field and axial motion artifacts were normally not apparent. Thus, our 

device allows physiological dynamics to be imaged at higher speeds and seems to provide 

superior robustness to motion artifacts as compared to fiber-scanning two-photon microscopy 

[215]. 

Detailed analysis of microcirculation focused on a subset of data from neocortex (n = 

3 mice) and hippocampus (n = 3) (Figure 2b-j). By using temporal cross-correlation analysis 

(Supplemental Methods) we found broadly distributed flow speeds for capillaries (< 10 µm 

diameter) and venules and arterioles (Figure 2b-j). For individual mice we calculated flow 

speed maps (Figure 2f,i). The range of speeds we found in behaving mice lies within reported 

ranges from anesthetized rodents [217, 218]. We also studied relationships between flow 

speed and vessel diameter. There were noticeable differences between mice, but larger vessels 

generally exhibited higher speeds in neocortex (Figure 2g) (correlation coefficient, <r> = 

0.46 ± 0.05; mean ± s.d.; n = 3 mice) and hippocampus (Figure 2j) (<r> = 0.67 ± 0.10; n = 3). 

Given these findings, miniaturized microscopy should be applicable to studies of 

cerebrovascular diseases and interactions between brain activity, behavior, and hemodynamics 

[218].  

We next studied Ca2+-dynamics of cerebellar Purkinje cells during active locomotor 

behavior. Purkinje cells’ dendritic trees lie within parasagittal planes and extend into 

superficial portions of the cerebellar molecular layer accessible by epi-fluorescence imaging. 

Stereotyped Ca2+-action potentials are known to pervade the Purkinje cell dendritic tree during 

complex (Na+ and Ca2+) spikes, are believed critical for motor coordination, are driven reliably 

by climbing fiber input from the inferior olive, and have been visualized previously by in vivo 

Ca2+-imaging [219, 220]. To label Purkinje cells with fluorescent Ca2+-indicator, we injected 

membrane-permeant Oregon Green-488-BAPTA-1-acetoxymethyl into the cerebellar vermis 

prior to mounting the microscope with the shorter objective installed.  

While mice were anesthetized we first characterized Ca2+-spiking within up to tens of 

dendritic trees concurrently. Ca2+-spikes appeared stereotyped, with a brief rise in relative 

fluorescence intensity (0.5%-1.5% ΔF/F) followed by an exponential decline over ~150 ms 

reflecting the dye’s kinetics of Ca2+ unbinding. Spikes occurred within a parallel series of 

stripe-shaped regions (~100-250 µm long, ~7-11 µm wide) that were approximately aligned to 

the rostral-caudal axis and consistent with the breadth of Purkinje cell arborizations [220]. 
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This striped appearance occurs because the dendrites extend perpendicular to the field of view. 

The striped profiles matched those we and others have observed by in vivo two-photon 

imaging [219] and verified correspond to complex spikes by simultaneous 

electrophysiological recordings (Supplemental Methods) [29]. 

After terminating anesthesia we studied Ca2+-spiking during animals’ immediate 

recovery (Figure 3a-d) and subsequent active behavior (Figure 3e-h and Figure 6) (n = 6 

mice). To account for slight spatial heterogeneities in illumination causing variations in 

fluorescence intensity as the bundle rotates, relative fluorescence traces from behaving mice 

were normalized by the mean illumination for a given bundle orientation and denoted with 

primes (ΔF´/F´). Ca2+-spikes were again apparent in striped domains (Figure 3a,b,e,f), 

allowing spike identification by an algorithm that accounts for dye kinetics by a temporal 

deconvolution prior to application of the detection threshold (Supplemental Methods). 

Average spike waveforms were closely similar across anesthetized, alert, and actively moving 

animals (Figure 3d,h).  

To determine spike rates, we assessed false positive detections by analyzing signals 

from control regions with the same forms as Purkinje cells but orthogonal, medial-lateral 

orientations. These control regions yielded false positive spike rates that depended on the 

detection threshold (Supplemental Methods). After setting the threshold such that false 

positive rates were fixed at an insignificant value (0.025 Hz), we examined Ca2+-spiking rates 

of Purkinje cells. Mean rates in awake mice were 0.57 ± 0.39 Hz (mean ± s.d.; n = 42 cells 

from 3 mice), within reported ranges [221]. Our percentage of spikes detected in error (2-

10%)  was within the error ranges (0-30%) achieved by extracellular electrophysiological 

recordings in live animals [222]. 

We next examined whether Purkinje cells in the vermis exhibit significant changes in 

net rates of Ca2+-spiking during active locomotion. Previous electrophysiological studies have 

examined this question in decerebrated cats, but the data have often been ambiguous [25]. We 

sorted our recordings into periods when the awake mice were active or resting by using the 

encoder trace as an indicator of animal movement. Periods when the mouse rotated the fiber 

bundle at > 200 deg/s were designated as movement episodes. Analysis of Ca2+-spiking rates 

showed nearly all Purkinje cells exhibited moderately greater spiking during motor activity 

compared to rest, creating highly significant differences between spike rate distributions in the 

active and resting states (P < 10-7; one-sided Wilcoxon signed rank test) (Figure 4, 
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Supplemental Methods).  

We also compared correlations in Ca2+-spiking between pairs of Purkinje cells. Prior 

studies in rats have reported increases in correlated Purkinje cell activity during tongue-licking 

[46]. These studies used electrode arrays > 2 mm in extent with 250 µm between electrodes. 

Our observations are of local networks of multiple neurons within a single field 240-370 µm 

across. Calculation of the mean correlation coefficient across all simultaneously recorded cell 

pairs [46] (Supplemental Methods) revealed modest increases in correlated Ca2+-spiking 

during active movement as compared to rest (P < 10-4; one-sided Wilcoxon signed rank test) 

(Figure 4). We more frequently saw synchronous Ca2+-activity within neighboring, but not 

distally separated, dendritic trees (Figure 6). This is consistent with the notion Purkinje cells 

are organized into micro-zones of correlated activity [220]. 

In summary, we created a microscope allowing cellular-level imaging in freely 

behaving mice. As compared to fiber-optic two-photon microscopes [215], which offer optical 

sectioning and lower background fluorescence, our microscope provides broader fields of 

view, faster frame rates, and decreased susceptibility to motion artifacts, but with the ~50-100 

µm depth limitations inherent to epi-fluorescence imaging [216]. Our microscope provides 

superior resolution to that attained by fiber bundles used without micro-optic objectives [210]. 

This latter approach, unlike ours, has not resolved cells. The GRIN microlenses we employed 

are similar to those for fluorescence microendoscopy [216, 217], but modified to 

accommodate our microscope’s focusing capability. Overall, our microscope is well suited for 

studying cellular processes in accessible tissues, such as the Purkinje cell Ca2+-dynamics 

examined here, within actively behaving wild-type or genetically manipulated mice or other 

laboratory animals.  

Other cells that might be studied with our microscope include olfactory bulb neurons 

or neocortical neurons with superficial dendrites. Deeper cells might be accessed by insertion 

of the microscope’s longer objective into tissue. Feasible improvements include addition of a 

second fluorescence channel or electrodes for auxiliary electrophysiological recordings. Given 

the growing use of animal disease models, including numerous mouse models of cerebellar 

ataxia and Purkinje cell degeneration, miniaturized microscopy should permit studies in 

behaving mice of neurological, behavioral, and cerebrovascular disorders. 
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FIGURES 

 

Figure 1. Miniaturized fluorescence microscopy for high-speed brain imaging in freely 

behaving mice. 

(a) Miniaturized fluorescence microscope.  

(b) Cutaway view of a computer-aided design (CAD) of the microscope.  

(c) CAD drawing of the microscope’s optical components. An image of the specimen is 

projected onto the fiber bundle using three microlenses, one of which is a focusing lens. 

Yellow arrows show the 1.1-mm movement range of this lens. A bundle of rays (blue) is 

shown passing through the optics on axis.  

(d) Illumination and light collection pathways. Illumination from a Hg-arc lamp passes 

through a multi-mode fiber, reflects off a dichroic mirror, and is coupled into the fiber bundle. 

The bundle delivers illumination to the microscope on the mouse and returns the fluorescence 

image, which is focused onto a high-speed camera. A commutator allows the bundle to rotate 

as the mouse moves. An encoder tracks these rotations for offline image stabilization. 

(e) Flow chart showing procedures for image alignment and analysis. 

Scale bars in a,b are 1 cm. 
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Figure 2. High-speed imaging of cerebral microcirculation in freely behaving mice. 

(a) Raw images of neocortical microcirculation in a behaving mouse, cropped to within the red 

box in (b). Arrowheads mark progress of single erythrocytes.  

(b) Image of neocortical vasculature, computed as the standard deviation of images acquired 

over a 10 s interval. Red and white boxes enclose regions shown in (a) and (c), respectively.  

(c) Methods for vessel diameter and erythrocyte speed determinations for (g) and (j). Images 

were divided into a grid and no more than one vessel was sampled per square. Yellow lines 

indicate cross-sectional vessel widths. Arrowhead points to where erythrocyte speed was 

computed in (d), which shows the area inside the blue box.  
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(d) Three cross-correlation maps computed at -30, 0, and +30 ms time delays, revealing 

average erythrocyte progression over 7 images acquired at 100 Hz.  

(e) Image of neocortical vasculature in an awake mouse, obtained as in (b).  

(f) Map of erythrocyte speed across image (e) when the mouse was freely moving.  

(g) Average erythrocyte speed vs. vessel diameter in the neocortex of behaving mice. Each 

data point color represents a different mouse.  

(h) Image of hippocampal vasculature in an awake mouse, obtained as in (b).  

(i) Map of erythrocyte speed across image (h) when the mouse was freely moving. 

(j) Average erythrocyte speed vs. vessel diameter in the hippocampus of behaving mice. Each 

data point color represents a different mouse.  

Neocortical images acquired at 100 Hz with 3 × 3 pixel-binning on the camera and 450-550 

µW illumination. Hippocampal images acquired at 75 Hz using 2 × 2 binning and 250-1020 

µW. Scale bars: 20 µm (a, d), 100 µm (b, e, h), 40 µm (c). 

 

Figure 3. High-speed imaging of cerebellar Purkinje cell dendritic Ca2+-spiking 

(a) 12 dendritic tree segments identified in an unrestrained mouse sitting quietly while 

recovering from anesthesia. Filled areas mark two cells studied in (c) and (d). 

(b) Average of 8 frames in which the red filled cell of (a) exhibited a Ca2+-spike.  

(c) ΔF/F traces averaged over the color corresponding filled areas in (a).  

(d) Average of 350 ms windows surrounding 20 (red) and 22 (blue) Ca2+-spikes extracted by 

temporal deconvolution and threshold detection from the color corresponding traces in (c). 

The windows were triggered to begin 90 ms before the onset of the spike. 

(e) 17 dendritic trees segments identified in a freely behaving mouse. Areas filled red and blue 
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mark cells studied in (g) and (h).  

(f) Average of 4 frames in which the blue-filled cell in (e) exhibited a Ca2+-spike.  

(g) ΔF'/F' (blue and red traces) averaged over the color corresponding filled areas in (e). 

(h) Average of 350 ms windows surrounding 37 (red) and 23 (blue) spikes from the color 

corresponding traces in (g).  

All images acquired with 3 × 3 binning of the camera pixels. Illumination power at the 

specimen was ~56 µW (a-d), and ~420 µW (g-j). Imaging frame rates were 62.5 Hz (c-d), and 

100 Hz (g-j). Distance scale bars are 100 µm. 

 

Figure 4. Comparisons of Purkinje cell Ca2+-spiking during rest and motor behavior. 

(a) For each of 42 cells, a comparison of Ca2+-spiking rates during periods when the mouse 

was moving versus periods of rest as determined from the rotational velocity of the animal’s 

head. Dashed line demarcates equal rates under both conditions. 

(b) Comparisons of Ca2+-spiking rates (mean ± s.e.) (left) and correlation coefficients for 

pairwise synchronous Ca2+-activity (right), during periods of rest and active movement, for the 

42 cells of (a). Modest but highly significant differences exist between the two behavioral 

states, for spiking rates and correlation coefficients (P < 10-7 and P < 10-4, respectively; one-

tailed Wilcoxon signed rank test).  
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Figure 5. Aspects of basic usage of the 1.1 g epi-fluorescence microscope. 

(a) Adjustment of the internal focusing lens provides focusing capability. Ten images of 

neocortical microvasculature acquired with the microscope’s internal focusing lens placed at 

nine different positions within its 1.1-mm-range of movement. Over the entire focusing range 

the focal distance varies by approximately 110 µm in tissue. The axial positions marked in 

each frame denote the shift in focal plane relative to the starting position (last panel in each 

row). The field of view size also changes substantially, over ~240-370 µm in diameter. Since 

epi-fluorescence microscopy does not provide 3D optical sectioning, out of focal plane blood 

vessels appear blurry but do not fully disappear from view. Scale bar: 100 µm.  

(b) Computational realignment of image sequences correcting for rotation of the fiber bundle. 

A sequence of raw image frames of neocortical microvasculature acquired at the indicated 

times (top), and the corresponding frames after realignment (bottom). Scale bar: 100 µm.  

(c) Motion artifacts in actively moving mice are minimal after computational realignment of 

image sequences. Plot of the movement artifacts remaining in the two lateral dimensions after 
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correction for bundle rotation in a behaving mouse. Each data point shows the lateral 

displacements of an individual image, measured as the displacement of the image content 

relative to the fiber bundle perimeter, from a recording of hippocampal microcirculation. The 

particular experiment used for this analysis had a level of motion artifact that was small in 

absolute terms (< 2 µm) but nonetheless atypically large relative to our usual experience. In 

nearly all experiments, the lateral jitter of the images within the bundle was sub-pixel in 

magnitude. 

 

Figure 6. Purkinje cell dendritic Ca2+ activity recorded in a freely moving mouse.  

(a) A trace of the rotational velocity of the mouse's head, as recorded via the optical encoder 

that senses rotation of the fiber bundle. Shading emphasizes when the mouse was turning its 

head or body.  

(b) ΔF'/F' traces from the 17 Purkinje cells of Figure 3e. The traces of this figure cover the 

same time period shown in Figure 3, and the blue and red traces are those of Figure 3g. 

MOVIES 

Movies 1, 2 and 3 are available from the Nature Methods at http://www.nature.com/nmeth 
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SUPPLEMENTAL METHODS 

Miniaturized microscope 

We designed a miniature fluorescence microscope < 1.1 g in mass using ZEMAX 

software for optical design and Autodesk Inventor for mechanical design. The microscope 

housing was fabricated in Polyetheretherketone (PEEK), which is lightweight and offers 

exceptional stiffness and machinability. The microscope has three microlenses (Figure 1c). 

The first is a 2-mm-diameter coupling lens (Thorlabs, 350430-A) with a focal length of 5 mm. 

The second, a focusing lens, is a 2-mm-diameter Ag-ion doped gradient refractive index 

(GRIN) element of ~0.15 pitch length (Grintech GmbH). This lens resides in a threaded shaft 

movable through a 1.1 mm range, corresponding to 70-100 µm of focal adjustment at the 

specimen at a working distance of 300-400 µm. Using a custom planetary gearbox (8:33 gear 

ratio) we controlled the movements of this lens manually with a gear-tipped handtool or via an 

optional stepper motor (ADM 0620, MicroMo). The motor can be mounted in the housing, 

increasing the microscope’s mass to ~2.8 g. We generally found it satisfactory to adjust the 

focus prior to, rather than during, imaging in the freely moving condition. Thus, we usually 

omitted the motor. Adjustment of the focusing lens alters the field of view diameter between 

approximately 240-370 µm in tissue. 

The microscope allows two options for the third lens, in both cases an objective. For 

imaging superficial structures such as neocortex and cerebellar cortex we used a shorter 

objective, a 1-mm diameter Ag-ion doped GRIN lens of 0.15 pitch and 0.47 NA (Grintech 

GmbH). For imaging deeper structures such as hippocampus we used a longer GRIN lens of 

similar specifications but with an extra 0.5 pitch in length. This longer objective protrudes ~4 

mm beyond the microscope housing. The microscope’s internal optical magnification is 

approximately 1.9 –2.7×, depending on the focal position.  

Optical illumination and detection pathways 

Illumination from a mercury (Hg) arc lamp passes through a 1-mm-diameter 

multimode fiber (BFH37-1000, Thorlabs), two collimating lenses (f = 35 mm and f = 50 mm), 

and an excitation filter (HQ480/40x or D485/25x, Chroma). After reflecting off a dichroic 

mirror (FF506-Di02, Semrock), illumination is focused by the projection lens (Fluar 10× 0.5 

NA, Zeiss) onto a 1.5-m-long fiber bundle (IGN-08/30, Sumitomo, NA 0.35), consisting of 
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30,000 fibers each with a 2.2 µm core and spaced ~3.7 µm apart. The portion of the bundle 

used for imaging is 0.72 mm in diameter, the outer diameter is 0.96 mm, and the bending 

radius is 40 mm.  

The proximal end of the fiber bundle is fixed within a custom commutator that allows 

the bundle to rotate with only a few microns lateral precession. Below the commutator the 

bundle passes through an optical encoder (E4P-300-059-H, US Digital) that provides digital 

quadrature signals (300 cycles/revolution) to a data acquisition board (PCI-6259, National 

Instruments) for tracking the bundle’s rotary motion. The bundle is looped to 20 cm diameter 

and the distal end is attached via a metal sleeve to the microscope housing. Fluorescence 

images collected by the microscope are focused onto the distal face of the bundle, which 

routes the array of pixel intensities to the proximal face. After passing back through the 

projection lens, the dichroic, and an emission filter (ET535/50m, Chroma), images are focused 

by a tube lens (f = 150 mm) onto an EM-CCD camera (iXonEM+, Andor). The projection and 

tube lenses provide a combined 9.1 × magnification, such that the entire face of the fiber 

bundle is imaged onto the camera. When there is no binning of camera pixels this ensures 

there is no degradation of spatial resolution by the camera, which has 512 × 512 pixels, each 

16 µm wide. Binning pixels degrades the resolution beyond the lateral resolution limit of ~2.8-

3.9 µm imposed by the spacing between fibers and the microscope’s magnification. 

Computational image realignment  

As the mouse torques its head or body the fiber bundle rotates within the commutator, 

relieving torsional strain within the bundle. The acquired images thus appear to rotate over 

time as the mouse behaves. To analyze cellular dynamics the raw image data stacks must be 

rotationally realigned. We did this using custom software written in Matlab (Mathworks). 

In the first stage of realignment a binary image of the bundle, which is approximately 

circular, is created for each frame of the video data. After finding the bundle’s centroid, we 

translate the image so the bundle is centered. These translations correct for precession of the 

bundle and are typically ~3 camera pixels in magnitude. The encoder data is then used to 

rotationally realign images frame-by-frame, using the first image as a reference. Due to slight 

inaccuracies in the encoder data, we use a second stage of realignment in which an edge 

detection filter is applied to the raw images to highlight small particles that inevitably 

accumulate on the proximal fiber bundle face. These particles can be removed, but we leave a 
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few to guide realignment. The filtered images are rotated by linear interpolation through a 

sequence of angles in increments of ~2 deg. Each rotated frame is compared to a reference 

frame by computing the cross-correlation of the two. Each frame is then rotated by the angle 

that yields the greatest correlation with the reference frame. This process is repeated for the 

entire video 3-4 times using progressively smaller angular steps. A final computation that we 

performed before all subsequent analyses of biological dynamics normalizes each image by its 

mean intensity across the field of view. This corrects for momentary fluctuations in 

illumination power or slow decreases in signal due to photobleaching. 

For rotational realignment to work well, it is important that image acquisition be 

sufficiently fast so that particles serving as fiducial markers are not blurry due to the mouse’s 

motion. At a 75 Hz frame rate a small percentage of the images are blurry during active mouse 

behavior, but at 100 Hz almost all frames are sharp. To acquire images at 100 Hz our 

particular camera requires at least 3 × 3 pixel binning. 

Analysis of cerebral microcirculation 

Following intravascular injection of fluorescent dye, individual erythrocytes appear 

dark in relief [223]. Because signals from those pixels lying within vessels exhibit significant 

temporal fluctuations due to erythrocyte movements, computation of each pixel’s standard 

deviation over a brief stretch of time creates an image in which the vasculature is highlighted 

against the background (Figure 2b,e,h). To compute a blood vessel’s diameter, the cross-

sectional intensity profile was fit to a Gaussian and the vessel diameter was defined as the 1/e2 

full width.  

To compute the average speed of erythrocytes passing through a chosen reference 

pixel in a stack of images (typically 10 s of data acquired at 100-Hz or 75-Hz frame rate), we 

computed the temporal cross-correlation between the fluorescence intensities at that pixel and 

at neighboring pixels for relative temporal delays, τ, of –1, 0, and +1 image frames. After 

setting to zero the values of all pixels lying outside vessels or exhibiting cross-correlations 

with the reference pixel below a minimum threshold value, we computed the centroid of each 

of the three cross-correlograms. The average speed of erythrocytes passing through the 

reference pixel was determined as the average of the distances between the τ = –1 and the τ = 

0 centroids and the τ = 0 and τ = +1 centroids, divided by the time between image frames (see 
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Figure 2d, for which delays of τ = +3 and τ = –3 frames were used for clarity). To create maps 

of mean flow speed, cross-correlograms were computed for all pixels manually determined to 

be within a vessel. 

For speed-diameter plots, erythrocyte speed was computed for pixel located at the 

peak of the Gaussian fit to the cross-sectional profile, which was usually close to the center of 

the vessel. To ensure unbiased sampling of vessels, the field of view was divided into a grid 

with squares of width 20-25 µm, approximately the widths of the largest vessels to be 

analyzed. No more than one vessel within each square was chosen for analysis. No analysis 

was performed if there was either no vessel or only a vessel junction located within the square. 

Pixels for which the Gaussian fit did not meet a minimum goodness-of-fit criterion or for 

which cross-correlogram amplitudes were below a minimum threshold were not included in 

Figure 2g,j.  

Detection of Ca2+ spikes 

When analyzing data from anesthetized or unrestrained mice that were not moving 

actively, we first computed ΔF (t)/F for each pixel, where F represents the pixel’s mean level 

of fluorescence averaged over all image frames, and ΔF (t) is the difference between the 

pixel’s momentary intensity level and F [32]. For active mice we corrected for slight angle-

dependent non-uniformities in illumination by computing what we call ΔF′ (t)/F′. All frames 

in an image stack were grouped into angular bins based on the orientation of the fiber bundle 

at the time of data acquisition, as determined from realignment. For every pixel in the 

realigned images, the mean intensity as a function of the bundle orientation, F′, was found by 

averaging over all frames within individual angular bins. ΔF′ (t) represents the difference 

between the instantaneous intensity at each pixel and the value of F′ appropriate for the 

bundle’s instantaneous orientation. We then normalized by F′ to find ΔF′ (t)/F′. A potential 

drawback of this approach is that it relies on sufficient visitation of each orientation for best 

estimation of F′. 

To detect Ca2+spikes in Purkinje cell dendrites, we first manually drew regions of 

interest (ROIs) enclosing Purkinje cell dendritic trees using image sequences obtained when 

the mouse was anesthetized. We created control ROIs of the same size and shape as Purkinje 

cell ROIs by rotating the latter by 90° within the field of view. For both control and Purkinje 
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cell ROIs we averaged ΔF (t)/F or ΔF′ (t)/F′ traces for all pixels within a given ROI. We 

performed algorithmic spike detection [224] on these traces by taking a temporal 

deconvolution with a decaying exponential filter (150 ms time constant) and then marking as 

spikes all instances of positive-going threshold crossings. To set the threshold for spike 

detection, we chose a threshold value such that the rate of spikes detected in error from control 

ROIs was both fixed (0.025 Hz) and much lower than Purkinje cell spike rates. We verified 

that spike rate determinations were unchanged to within our measurement accuracy when we 

used control ROIs obtained by rotating Purkinje cell ROIs by -90°, so that noise estimates 

came from different regions still perpendicular to Purkinje cell dendrites.  

For comparisons of Purkinje cell Ca2+ activity between periods of animal movement 

and periods without substantial movement, we used the optical encoder signal as an indicator 

of the mouse’s activity level. Image frames acquired while the rotational speed of the fiber 

bundle was > 200 deg/s were deemed to occur during animal movement. Image frames 

acquired while the rotational speed was < 200 deg/s were deemed to occur during inactivity. 

Ca2+ spikes were then sorted into these two behavioral states according to the image frame of 

their occurrence. Ca2+ spiking rates for each cell were determined as the total number of spikes 

the cell generated while the animal was in a given behavioral state (active or resting), divided 

by the total time the animal spent in that state. 

To compute pairwise correlation coefficients, we first smoothed and down-sampled 

both the Purkinje cell Ca2+ spike trains and the optical encoder signal into time bins of 50 ms. 

Periods of animal activity and inactivity were discriminated from the resulting optical encoder 

trace by again designating 200 deg/s as the minimum rotational speed of the fiber bundle 

during animal movement. To assess levels of synchronous Ca2+ activation the correlation 

coefficient was computed for all pairs of cells and for each of the two behavioral states. As in 

prior work[46], the correlation coefficient for two cells was defined as the covariance in the 

activity between the two spike trains divided by the product of the standard deviations in 

activity for each of the individual spike trains. This yields a correlation coefficient that is 

bounded within [-1,1]. 

As a control, we computed in analogous fashion the activity rates and correlation 

coeficients for the control ROIs rotated by 90 deg from the Purkinje cell ROIs. Not 

surprisingly, we found there were slight increases in both the rates of spikes detected in error 

from the control ROIs and in the associated correlation coefficients during periods of animal 
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movement, as compared to rest. However, these false positive increases were approximately 

ten-fold smaller in value than the increases detected in the real ROIs. Further, statistical 

comparison of the rate and correlation coefficient increases that occurred during movement for 

the real ROIs, versus those for the control ROIs, showed that the real and false positive 

increases came from highly distinct distributions (P < 10-9 and P < 10-25, for spike rates and 

correlation coefficients, respectively; Kolmogorov-Smirnov test). Thus, the increases during 

animal movement we found for both the Purkinje cell Ca2+ spiking rates and correlation 

coefficients cannot be accounted for by the much smaller increases in false positive detection.  

Statistical analysis 

Statistical analysis was performed in Matlab (Mathworks) and relied on non-

parametric tests to avoid assumptions regarding normality. Comparisons of the distributions of 

Ca2+ spiking rates and pairwise correlation coefficients between active and inactive behavioral 

states were performed using the one-sided Wilcoxon signed rank test (Figure 4b). 

Comparisons of activity rate and correlation coefficient increases between the real and control 

ROIs were performed using the Kolmogorov-Smirnov test.  

Animals  

We used mice (5-17 weeks) of various genetic backgrounds (mainly C57BL/6, 

BALB/c, and CD-1). The Stanford APLAC approved all procedures involving animals. 

Surgical preparation and habituation.  

Mice were anesthetized with either gaseous isoflurane (1.5-2.5%; mixed with 2 L/min 

oxygen) or intraperitoneal injection of ketamine and xylazine (80-100 mg and 16-20 mg per 

kg body weight, respectively). Body temperature was monitored using a thermistor placed 

underneath the animal’s belly and maintained at 36-37°C using a heating blanket. Depth of 

anesthesia was assessed by monitoring pinch withdrawal, eyelid reflex, corneal reflex, 

respiration rate, and vibrissae movements. The animal’s skull was exposed and cleaned above 

the site of brain imaging.  

For experiments involving hippocampal imaging, two skull screws were used to 

maintain attachment of dental acrylic cement to the skull. A craniotomy 2.5-2.7 mm in 

diameter was performed at 2.0-2.5 mm posterior to bregma and 2.0-2.5 mm lateral. The 

exposed cortex was kept superfused with warm Ringer’s solution. The dura was removed 



 

 91 

carefully with forceps. Neocortical matter above the hippocampus was removed by 

aspiration. The exposed hippocampus was irrigated with Ringer’s solution. A windowed-

capillary (~3 mm length, 2.5 mm outer diameter, #0 end cover glass window) was inserted 

into the craniotomy. In some animals, low melting point agarose (1.5%) sealed the craniotomy 

and mechanically stabilized the capillary over the hippocampus. Alternatively, a custom 

silicon washer served the same purpose. A final sealing of dental acrylic was applied over 

exposed areas of the skull. Animals recovered from surgery for at least 1 week prior to 

imaging. 

For experiments involving cerebellar cortex or neocortex, a custom metal plate 

allowing cranial access and repeated head fixation was attached to the skull with dental acrylic 

cement. No skull screws were used. Animals recovered from this procedure for several days. 

For habituation, a training dummy similar in mass to our microscope was attached to the 

animal’s head plate during that period. On the imaging day, a cranial window (1.5-3.5 mm in 

diameter) was opened 1.5 mm posterior to bregma and 1.0 mm lateral (neocortex) or -6.0 to -

6.5 mm posterior to bregma and 0.5 mm lateral (cerebellum). During this procedure, exposed 

cortex was superfused with warm artificial cerebral spinal fluid (ACSF; 125 mM NaCl, 5 mM 

KCl, 10 mM D-Glucose, 10 mM HEPES, 2 mM CaCl2, 2 mM MgSO4; pH adjusted to 7.4 

with NaOH). The dura was removed carefully. For Ca2+-imaging studies, the fluorescent 

indicator was injected into the brain (see Fluorescence Labeling).  

To dampen brain motion the craniotomy was filled with agarose (1.5%; Type III-A, 

high EEO; Sigma) in ACSF and covered by a coverslip (Erie Scientific, 7 mm diameter circle, 

#1 thickness). The coverslip was kept in place by a custom metal ring; the optical window was 

sealed by coating coverslip edges with a thin layer of dental acrylic. Due to the short length of 

the GRIN objective used and the limited focusing range of our microscope, we flattened and 

thinned the sealing layer of dental acrylic using a high-speed drill and by scraping with a 

microsurgical blade.  

Imaging sessions 

Mice were initially kept under isoflurane anesthesia (1.5-2.5%; mixed with 2 L/min 

oxygen) and maintained at 36-37°C using a heating blanket. The miniature microscope was 

positioned above the optical window and lowered towards the brain using a translation stage 

until a fluorescence image of labeled surface structures was obtained at a low illumination 
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power (30-150 µW). After locating a suitable recording site and focal depth, we turned off the 

illumination, fixed the head mount to the skull and/or to the metal head plate using 

CerebondTM adhesive (myNeuroLab.com), and applied dental acrylic. Without CerebondTM, 

surface structures often shifted several tens of microns out of focus during the final hardening 

stage of the dental acrylic (~15-20 minutes after application), possibly due to contraction of 

the cement. CerebondTM minimized this effect. When the motor is omitted the entire mass 

mounted on the mouse’s head is ~1.8 g, including ~0.7 g for the head plate and adhesives. 

After the dental acrylic had hardened, mice were removed from isoflurane, placed in a round 

enclosure (20 cm diameter) and given at least several minutes to recover from anesthesia. We 

recorded mouse behavior using a video camera. In most experiments, after a session of active 

behavior mice were anesthetized again with isoflurane for further brain imaging. 

Fluorescence labeling  

For studies of microcirculation, we labeled the blood plasma by tail vein injection of 

0.15-0.25 ml FITC-labeled dextran (Sigma, 2000 kDa, 10 mg/ml) [223]. For cerebellar Ca2+-

imaging studies, we used targeted bulk-loading of tissue with the membrane-permeant 

fluorescent Ca2+-indicator Oregon Green 488 1,2-bis (2-aminophenoxy) ethane-N,N,N',N'-

tetraacetate-1 acetoxymethyl (OGB-1-AM; Molecular Probes), performed as described[32, 

225, 226]. Final concentrations of OGB-1-AM and DMSO in our pipette solution were 500 

µM and 2%, respectively. To obtain a homogenous and widespread stain of the Purkinje cell 

and molecular layer we performed pressure ejections (3-3.5 psi pressure) using a picrospritzer 

(Picospritzer III, General Valve) of 1-2 min duration at different tissue depths and locations. 

Typically, 5-6 injections were made in a grid pattern with ~200 µm spacing. 

Combined imaging and electrophysiological recordings of Purkinje cell complex spikes  

Studies were performed using C57BL/6 mice under isoflurane anesthesia. Ca2+-

transients in distal Purkinje cell dendrites were visualized using a custom-built two-photon 

microscope equipped with a 40 × 0.8 NA water-immersion objective (Zeiss). Extracellular 

Purkinje cell activity was recorded using beveled borosilicate glass electrodes (A-M Systems, 

Inc.; OD, 1.0 mm; ID, 0.58 mm; internal solution, 2 M NaCl and 200-500 µM sulforhodamine 

101; pipette resistance, 5-8 MΩ). Electrodes were positioned under visual control near OGB-

1-AM labeled Purkinje cell somata. Purkinje cells were identified by the brief pause in simple 
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spike activity following each complex spike. The raw electrode signal was amplified, filtered 

(A-M Systems, Model 1800 microelectrode AC amplifier; low cut-off, 300 Hz; high cut-off, 5 

kHz), digitized (20 kHz) and stored on disk for off-line analysis. Two-photon imaging data of 

dendritic calcium activity was recorded simultaneously (frame rate, 20.35 Hz) in superficial 

regions of the molecular layer (depth, 20-50 µm) located directly above the microelectrode tip. 

The correspondence between dendritic Ca2+ spikes and electrophysiological complex spike 

activity was verified through a spike-triggered average analysis written in Matlab and agrees 

with prior combined optical and electrophysiological studies of Purkinje cells [219]. 
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Chapter 4: Motor behavior activates Bergmann glial networks 

ABSTRACT 

Although it is firmly established neuronal activity is a prime determinant of 

animal behavior, relationships between astrocytic excitation and animal behavior 

have remained opaque. Cerebellar Bergmann glia are radial astrocytes that are 

implicated in motor behavior and exhibit Ca2+-excitation in vitro. However, Ca2+-

excitation in these cells has not previously been studied in live animals. Using 

two-photon microscopy we found that Bergmann glia exhibit three forms of 

Ca2+-excitation in awake behaving mice. Two of these are ongoing within the 

cerebellar vermis even when animals are resting. During locomotor performance 

concerted Ca2+-excitation arises in networks of at least hundreds of Bergmann 

glia extending across several hundred microns or more. Concerted Ca2+-

excitation was abolished by anesthesia or blockade of either neural activity or 

glutamatergic transmission. Thus, large networks of radial astrocytes can be 

activated by specific animal behaviors and undergo excitation of sufficient 

magnitude to potentially initiate macroscopic changes in brain dynamics. 

 

INTRODUCTION 

Neurons have long been studied in live animals by electrophysiological techniques, 

but astrocytes’ lack of electrical excitability has made these cells’ relationships to animal 

behavior more challenging to uncover. Nonetheless, since the discovery of astrocytic Ca2+-

excitation in vitro, multiple processes that involve astrocytic Ca2+-signaling have emerged. In 

adults these include modulation of neuronal activity and regulation of cerebral blood flow [36, 

227]. Recently, a few in vivo Ca2+-imaging studies have begun to reveal roles played by 

astrocytic Ca2+-excitation in live animals. These pioneering studies have provided initial 

glimpses of how astrocytes respond to sensory stimulation  and modulate microcirculation 
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[33, 34, 228, 229]. However, the current in vivo imaging data generally share two limitations. 

First, results were obtained in anesthetized animals, and it is unexplored whether there 

are specific animal behaviors that elicit astrocytic Ca2+-excitation. Anesthesia precludes 

animal behavior, and neuronal responses to sensory stimuli can be quite distinct in the 

anesthetized and awake brain [39, 230, 231]. The strong possibility exists astrocytes will show 

equally divergent dynamics across brain states. Since astrocytic dynamics may reflect aspects 

of neuronal activity [31, 33, 34, 228], neurons’ dependence on anesthesia makes this 

possibility all the more probable.  

A second limitation is that in vivo studies have typically not distinguished among 

astrocytic sub-types. It is widely understood that different neuron types, even in the same 

brain area, can show grossly dissimilar activity patterns. Like neurons, astrocytes display 

considerable non-uniformity, so astrocytic dynamics might also vary between brain areas and 

layers [227, 232, 233]. Throughout the adult brain, a basic distinction exists between the radial 

astrocytes, which include the Bergmann glia of the cerebellar cortex and the Müller cells of 

the retina, and the ‘star-shaped’ astrocytes of the neocortex and other areas. These two classes 

exhibit markedly different morphologies and patterns of Ca2+-excitation as seen in vitro [227, 

233], but Ca2+-excitation in radial astrocytes has not previously been studied in live animals.  

Motivated both by the recent imaging progress and the above limitations, we studied 

Ca2+-excitation within radial astrocyte networks in awake behaving mice. We focused on a 

basic behavior, locomotion, towards ascertaining whether the Bergmann glia have 

behaviorally triggered dynamics. These cells lie in areas crucial for motor coordination, are 

implicated in motor behavior [234], form gap-junction coupled networks, and can be 

identified by their palisade arrangement and status as the sole astrocytes in the cerebellar 

molecular and Purkinje cell layers. We developed methods for two-photon imaging in the 

cerebellum of awake, head-restrained mice allowed to move on an exercise ball and studied 

how wakefulness and motor behavior affect Ca2+-excitation as it normally occurs in Bergmann 

glial networks. 

We found that Bergmann glia of the cerebellar vermis, an area implicated in 

locomotor coordination, exhibit three forms of Ca2+-transients in awake mice. One of these, 

which we named ‘Ca2+ flares’, was triggered during locomotion and extended over 

macroscopic domains at least hundreds of microns across. Flares involved large networks of 

astrocytes containing at minimum hundreds of Bergmann glial fibers. The other two forms of 
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Ca2+-excitation, which we named ‘sparkles’ and ‘bursts’, persisted in awake but resting 

animals. Sparkles appeared restricted to individual fibers. Bursts were radial waves expanding 

in three dimensions across the fibers of ~10-40 Bergmann glia. Anesthesia markedly disrupted 

Bergmann glial Ca2+-excitation, showing that studies in awake animals are essential. The 

dependence of flares on locomotion emphasizes the need to study behaving subjects.  

RESULTS 

Imaging Bergmann Glia in Awake Mice During Rest and Locomotion 

Our first step was to show we could visualize glial Ca2+ transients in behaving mice 

without undue levels of motion artifact. To achieve this we used two-photon microscopy in 

awake, head-restrained mice allowed to run voluntarily on an exercise ball (Figure 1A). After 

habituating a mouse to periods of head-restraint, we created an optical window in the cranium, 

injected the membrane-permeant fluorescent Ca2+-indicator Oregon-Green-488-BAPTA-1-

acetoxymethyl (OGB-1-AM) into cerebellar cortex [235], and performed Ca2+-imaging across 

areas 200-500 µm wide with the cranium held secure. With this approach we studied lobules 

V and VI of the vermis (Figure 1B), areas implicated in coordinating hind and forelimbs [236, 

237]. Fluorescently labeled Bergmann glia were identified by the distinct palisade 

arrangement of their fibers in the molecular layer, the size and location of their somata in the 

Purkinje cell layer, their slow Ca2+-transients, and by counterstaining with the red fluorescent 

astrocyte marker sulforhodamine101 (SR101) [238-241]. SR101 images revealed both 

Bergmann glial somata and fiber palisades (Figures 1C and S1). Since SR101 is a non-

functional morphological marker, we also used it to characterize the motion artifacts in our 

image data.  

When the mice were not driving the exercise ball, motion artifacts were essentially 

negligible (± 0.4-0.6 µm, lateral s.d.; ± 1.5 µm, axial). During mouse locomotion there were 

small, transient lateral displacements (± 0.7-0.8 µm; Figure 1D) that were correctible by 

offline image registration. Artifacts due to axial displacements (± 3.4 µm) were largely 

mitigated by the coinciding alignments of the optical axis and Bergmann glial fibers in the 

dorsal-ventral direction. Crucially, within SR101 images we saw no characteristic phenomena 

resembling the forms of Ca2+-excitation seen repeatedly in OGB-1-AM images from all 33 
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alert mice studied. Having achieved a suitable imaging assay, we next characterized these 

forms of Ca2+-excitation in detail. 

Ca2+ Sparkles are Ongoing in Awake Mice and Appear in Individual Glial Fibers 

When mice were on the exercise ball but voluntarily sitting still, we observed two 

forms of spontaneous Ca2+ excitation in Bergmann glia. The first of these we termed Ca2+ 

sparkles due to their highly localized appearance.  

Sparkles occurred in the main Bergmann glial fibers of the palisades that were co-

labelled by SR101 (Figures 2A-D). Sparkles were modest in amplitude, with relative 

fluorescence increases (ΔF(t)/F) sometimes just above background fluctuations. To determine 

the rate and time course of sparkles we performed a conservative analysis by focusing on 

events with >10% increase in ΔF(t)/F, which could be readily identified. Within this event 

subset (13.2 ± 4.1% peak ΔF(t)/F; mean ± s.d.; n = 4285 events), sparkles had variable 

duration (3.3 ± 3.9 s) and occurred sparsely (4.5 ± 2.6 Hz/mm2; n = 15 animals) (Figures 2B 

and 2D). By considering the density of glial fibers and the proportion of the molecular layer 

sampled in one of our recordings, we estimated individual glial fibers have mean sparkle rates 

between ~0.01-0.1 min-1. This is comparable to spontaneous Ca2+-excitation rates for 

astrocytes in other brain areas [31, 232]. 

Based on sparkles’ localization and the anatomical association between neuronal 

synapses and fine protrusions from Bergmann glial fibers, sparkles might represent activation 

of Bergmann glial microdomains in response to synaptic activation [241]. Consistent with this 

idea, sparkle rates were reduced by local blockade of either neuronal activity using the Na+-

channel blocker tetrodotoxin (TTX) (likelihood ratio test; p < 10-6 in each of n = 4 mice) or 

glutamatergic transmission using the broad-spectrum glutamate receptor antagonist γ-D-

glutamylglycine (γDGG) (p < 0.002 in each of n = 3 mice). Pyridoxalphosphate-6-azephenyl-

2’,4’-disulfonic acid (PPADS), a non-selective P2 purinergic blocker, had no significant 

effects on sparkle rates. However, in mice anesthetized by isoflurane, sparkle rates fell 

markedly (p < 10-5 in each of n = 3 mice).  

Ca2+ Bursts Involve up to ~40 Bergmann Glial Cells in Alert Mice 

Like sparkles, bursts occurred spontaneously in mice resting voluntarily on the 

exercise ball. Bursts appeared as radially expanding waves that were not restricted to SR101-
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labeled palisades and spread over approximately ellipsoidal regions with greater medio-lateral 

(55 ± 37 µm) than rostro-caudal (44 ± 33 µm) extent (n = 63 events; Wilcoxon signed rank 

test, p < 0.001) (Figures 2E and 2H). By using three-dimensional (3D) two-photon imaging  to 

monitor multiple tissue depths with near simultaneity [242], we found bursts originated across 

all depths of the molecular layer and had an axial extent of 56 ± 23 µm (Figures 2E and 2G). 

Typical burst volumes (86,000 ± 61,000 µm3; n = 10) implicate involvement of many fibers, 

from on average ~10 but up to ~36 Bergmann glia based on these cells’ somatic density [238, 

239]. Peak ΔF(t)/F increases for bursts (13 ± 4.8 %; n = 96 events in 11 subjects) were similar 

to those for sparkles, but the two phenomena were unmistakably distinct since bursts occupied 

much larger volumes. Like sparkles, bursts were infrequent (126 ± 173 mHz/mm2), but rates 

varied substantially between mice (range: 3.2 – 566 mHz/mm2). 

Bursts displayed a time course (Figure 2F) similar to those of Bergmann glial Ca2+-

transients previously recorded in brain slices in response to parallel fiber stimulation [243, 

244]. The similarity suggests both phenomena might involve ATP-triggered release of Ca2+ 

from intracellular stores, as found in vitro. Consistent with this, bursts were eliminated by 

PPADS (p < 0.01 in each of n = 4 mice). However, bursts persisted after application of either 

TTX, γDGG, or isoflurane anesthesia, none of which produced reliable changes in burst 

frequency. 

The burst time course conformed closely (r = 0.9 ± 0.1, s.d.; n = 96 events) to a 

convolution of two exponentials, with one time constant each for both the rise (1.5 ± 0.7 s) 

and decay (1.8 ± 1.2 s) of the Ca2+ signal (Supplemental Methods). The rise and decay time 

constants for each burst were highly correlated, with 81% of events showing a negligible 

(<1%) difference between the two. This form most simply arises from two biochemical events 

occurring in succession at approximately equal rates. One of these could be the diffusion of a 

small molecule trigger such as ATP, a possibility consistent with bursts’ expansion from a 

central initiation point. In the presence of γDGG, bursts’ decay times significantly lengthened 

(9.6 ± 10 s; p < 0.001 Wilcoxon rank sum) as compared to all other pharmacological 

conditions (Figure 2F). Rise times under γDGG (2.2 ± 1.2 s) were not significantly affected. 

Given that bursts persist under γDGG, glutamate might play a role in bursts’ termination but 

perhaps not in their initiation.  
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Motor Behavior Activates Ca2+ Flares Across Bergmann Glial Networks 

When mice ran voluntarily on the exercise ball, Ca2+-excitation arose in large 

networks of Bergmann glia. These events, which we termed flares, occurred almost 

exclusively at locomotor onset (n = 187 events) and appeared to be partly composed of a large 

number of sparkles. Flares often extended across our entire field of view (200-500 µm), and 

typically involved hundreds of Bergmann glial fibers (Figure 3). 

Because astrocytes have been reported to show Ca2+ responses to mechanical stress, 

we were initially concerned flares might be artifacts due to transient mechanical perturbation 

to the brain at running onset. However, multiple lines of evidence and control experiments 

were inconsistent with this possibility, leading us to conclude flares are part of normal brain 

physiology. First, flares show a completely different time course and are an order of 

magnitude more rapid than the Ca2+ signals reported to occur in response to mechanical stress 

[245]. Second, flares occurred in our movie data even when there was no perceptible 

movement of the brain. Third, in cases when there were measurable, micron-scale brain 

displacements at motor onset, we found no correlation between the magnitude of tissue 

displacements and either the occurrence or amplitude of Ca2+ flares. Fourth, the occurrences of 

flares were independent of mechanical factors such as the craniotomy diameter (0.5-3.0 mm), 

whether the dura mater was removed or the craniotomy covered with agarose and a cover slip. 

Fifth, we never saw flares in control experiments with awake mice in which we applied 

pressure on the animal’s head holder or optical window. This was so even when the applied 

pressure caused far greater tissue displacements than those occurring during running-evoked 

flares in the same mice. Sixth, flares were abolished by blockade of neuronal Na+ channels or 

glutamatergic transmission, showing that flares require neuronal activity and do not arise from 

direct mechanical activation of individual Bergmann glia. Seventh, we saw during flares no 

signs of spreading neuronal depression, a known effect of mechanical injury to the brain 

(Charles et al., 1991), as assessed by imaging neuronal Ca2+ activity in Purkinje cells and 

molecular layer interneurons. Thus, we found no support for the idea flares were mechanically 

induced. 

Among flares’ interesting properties was their mode of initiation. Flares did not seem 

to involve a stereotyped manner of propagation, but usually arose similarly across multiple 

locomotor events within individual fields of view. At flare onset we typically saw a smaller 

number of fibers within the palisades exhibiting Ca2+ increases that resembled sparkles. The 
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number of sparkling fibers rose over 4.0 ± 1.5 s until reaching peak activation (Figure 3D). 

The rate and extent of sparkling varied significantly between flares. Only in 6.9 ± 5.9% (n=87) 

of cases did flares of significant extent and sparkling rates (>100 Hz/mm2) occur without 

measurable rotation of the exercise ball. 

We initially wondered if isolated sparkles might be spontaneously occurring, 

‘miniature’ flares, perhaps analogous to the miniature post-synaptic potentials that represent 

spontaneous neurotransmission. Flares showed a similar pharmacological profile as sparkles 

and were eliminated by TTX or γDGG (Figure 4A and B) even while locomotor activity 

persisted. In isoflurane-anesthetized mice we never saw flares, even if we moved or 

electrically stimulated the animals’ limbs. PPADS did not affect flares (Figures 4A and 4B). 

However, by comparing the SR101 and OGB-1-AM data channels we saw that Ca2+ increases 

during flares occurred both in the palisades and surrounding areas where finer fibers lie 

(Figures 3D and 3E). This does not eliminate the possibility flares might be seeded by or 

partly composed of sparkles, but does show flares are not simply composites of multiple 

sparkles (Discussion). 

We next characterized the spatial magnitude of flares, because events involving 

widespread activation might be more likely to have a role in animal behavior or large-scale 

brain dynamics. 3D imaging showed flares occurred over at least ~0.5 × 0.5 × 0.1 mm3 (our 

maximum sample volume) and reached significant depths of the molecular layer (Figure 3E), 

sometimes involving Bergmann glial cell bodies. Thus, flares are macroscopic and cover 

several cerebellar microzones, divisions of the cerebellar cortex that map to parts of the body 

[246]. Given this size and their behaviorally triggered character, flares seem well poised to 

influence neuronal or cerebral blood flow dynamics associated with motor behavior 

(Discussion).  

Ca2+ Flares Have Refractory Dynamics That Depend on Running History 

As an initial investigation of flares’ potential relevance to locomotor behavior, we 

analyzed the temporal relationships between the two. We found a consistent order of events 

and a refractory character to flares’ occurrences, which restrict how flares might relate to the 

modulation of cerebral blood flow during behavior (Discussion). 

Flares nearly always occurred after movement of the exercise ball and never before 

(Figures 4B-D). Flares also had limited duration, regardless of how long the mouse’s 
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locomotor episode lasted (Figure 4C). If >10 s had elapsed since termination of the prior 

episode, flares reached peak fluorescence 4.4 ± 2.5 s (n = 93 events) after re-initiation of 

movement. Ca2+ increases during flares were spread over 9.7 ± 3.1 s (n = 110 events) (Figure 

4C). Thus, if locomotion was brief (<4 s) flares outlasted the movement, but vice versa if 

motor activity persisted (>16 s). Flares were also refractory and arose more reliably at motor 

onset when there had been no prior recent movement.  

Thus, flares tended to accompany the initial but not the later movements within series 

of running bouts occurring in quick succession (Figure 4B). The percentage of cases in which 

flares occurred at motor onset rose from ~7% when the animal had moved in the previous 4 s 

(n = 41), to over 93% if >32 s had elapsed since termination of the prior movement (n = 75) 

(Figure 4D). These refractory time scales are reminiscent of the refractory character of 

cerebral blood flow up-regulation [247, 248], suggesting a potential link between the two 

(Discussion). 

DISCUSSION 

We conducted the initial study of radial astrocyte Ca2+-excitation in the live adult 

brain. In Bergmann glia we found three types of Ca2+-excitation: flares, bursts, and sparkles. 

The modes of initiation and pharmacological data suggest sparkles and flares could share 

some common mechanisms distinct from those of bursts. Sparkles and flares were affected by 

isoflurane, as well as blockades of either neuronal activity or glutamatergic transmission, but 

not of purinergic transmission. Bursts require purinergic signaling but neither Na+ channel 

activation nor glutamatergic transmission. Strikingly, at their initiation flares appear to be 

composed of multiple sparkles. Thus, it is tempting to speculate sparkles could be seed or 

miniature flares.  

This speculation must be tempered on several grounds. Sparkles occur in animals at 

rest and persist at low rates under TTX or isoflurane, whereas the neural activity patterns 

needed to initiate flares appear specific to those for motor behavior. Further, flares activate 

both the main glial fibers in palisades and surrounding fine fibers. Our recordings do not have 

the resolution to eliminate the possibility sparkles activate fine fibers closely adjacent to the 

palisades, but the data show conclusively the tighter spatial association between sparkles and 

palisade fibers. Flares activate the palisade fibers along large portions of their axial extent, but 

sparkles have more limited axial size.  
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Regardless of whether sparkles are precisely limited to the palisades, it remains 

plausible a smaller number of localized events, sparkles, might together initiate a composite 

macroscopic event, a flare. This scenario prompts many questions for future study, including 

how many sparkles constitute a flare and under what conditions can sparkles become flares? 

Overall, network Ca2+ activation during flares contrasts with that of bursts, which appear to 

have a single initiation site, use different receptor pathways, and cover only tens of cells.  

Isoflurane Anesthesia Disrupts Bergmann Glial Ca2+-excitation 

Recent studies have explored Ca2+-excitation in neocortical astrocytes of anesthetized 

animals [31, 33, 34, 228, 229, 232, 240]. Our studies focused on Bergmann glia, but a 

comparison of our recordings from awake mice to those from the same fields of view while 

the mice were under isoflurane anesthesia provides reason to be cautious in interpreting any 

results on astrocytic dynamics from anesthetized subjects. Isoflurane exerts direct and indirect 

effects on astrocytes, influencing glutamate uptake and gap-junction-mediated signaling [249, 

250]. We found isoflurane disrupts Bergmann glial Ca2+-excitation by eliminating flares and 

reducing sparkle rates. These results suggest sparkles and flares are each promoted by specific 

forms of neural activity. Hence, wakefulness and animal behavior seem to be key influences 

on the excitation of glial networks.  

Ca2+ Excitation Differs in Bergmann Glia and Protoplasmic Astrocytes 

A few studies in anesthetized animals have found spontaneous and sensory-evoked 

Ca2+ transients in protoplasmic astrocytes of the neocortex  The spontaneous transients were 

temporally sparse, generally confined to individual astrocytic processes, and rarely involved 

cell bodies [31, 33, 232]. Sensory-evoked transients were also restricted to individual 

astrocytes, but in some cells arose in both processes and somata [33, 34]. Sensory-evoked 

excitation needed glutamatergic transmission [33, 228] but spontaneous transients were 

unaffected by TTX and PPADS [232]. In contrast, we found Bergmann glia fibers show both 

highly localized and two forms of spreading Ca2+ transients. In Bergmann glial somata, Ca2+ 

transients were less frequent (~8.9 ± 3.7 mHz/mm2) than in fibers but involved large ΔF(t)/F 

increases (22 ± 12 % ; n = 12), were localized to one or a few neighboring somata in resting 

animals, and sometimes spread among several cell bodies during flares. 

A recent study in the neocortical S1 hindlimb area of awake mice reported sub-



 

 103 

populations of astrocytes that show Ca2+ activity correlated with running behavior [251]. 

These Ca2+ increases lasted several seconds, arose ~1-2 s after running onset, and were 

reported to be qualitatively similar to those seen in anesthetized animals. In comparison, 

locomotor-evoked cerebellar flares had no analogs in anesthetized mice, variable delays 

relative to running onset and relatively consistent durations. 

Our results highlight the need to compare astrocytic physiology across brain regions, 

between astrocytic sub-types, and under anesthesia to during animal behavior. Unlike 

protoplasmic astrocytes, Bergmann glia have a radial, not a star-shaped morphology, which 

confers distinct cellular organization and functional properties [227, 233]. Our results also 

show the utility of 3D imaging, which allowed us to reconstruct burst volumes and assess the 

axial extents of sparkles and flares. Comparisons of 3D data between areas and layers will 

help reveal the diversities of roles astrocytes might play in brain dynamics.   

Possible Functions of Sparkles and Bursts 

In vitro studies have shown Bergmann glia can respond to neuronal activity with 

intracellular Ca2+ transients and that Ca2+ signaling plays a key role in regulating structural and 

functional interactions between these cells and cerebellar neurons [233, 252]. It has been 

unclear if these responses evoked in vitro have analogs in vivo and if Bergmann glia exhibit 

spontaneous Ca2+ transients in live animals. We found Bergmann glia exhibit at least two 

types of spontaneous Ca2+ excitation, sparkles and bursts. 

Given their spatial localization, sparkles might represent activation of Bergmann glial 

microdomains in response to synaptic activity [241]. Since sparkles persist at reduced rates 

under TTX, γDGG, and isoflurane, they might partly be of intrinsic origin [232, 253]. The low 

rate of sparkles we report is comparable to rates of spontaneous Ca2+ activity seen in vivo in 

neocortical astrocytes [31, 232]. Due to our conservative detection threshold our sparkle rate 

estimate should be viewed as a lower bound (Supplemental Methods).  

Bursts occur both within and outside the main glial fibers of the palisades and cover 

fibers from typically ~10 but sometimes up to a few tens of Bergmann glia. The radially 

expanding waveform of bursts suggests a diffusible messenger could mediate these events and 

indicates bursts involve finer glial processes. Bursts’ ellipsoidal volumes suggest the diffusion 

of any such messenger is anisotropic, which is plausible given the ordered, anisotropic 

architecture of cerebellar cortex.  
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ATP is a likely candidate as a messenger, since blockade of P2 purinergic receptors 

eliminates bursts. The burst time course closely resembles that of large amplitude Ca2+ 

transients evoked in Bergmann glia upon parallel fiber stimulation in brain slices. These 

evoked transients also involved purinergic receptor activation and release of Ca2+ from 

intracellular stores [243, 244]. Given these similarities, we interpret the ongoing bursts we saw 

in vivo as the physiological analogs of the evoked transients recorded in vitro. Using 3D 

imaging we found bursts spread over an approximately ellipsoidal volume of ~86,000 mm3, 

yielding estimates that bursts traverse 55,000-70,000 parallel fiber-Purkinje cell synapses from 

~3 adjoining Purkinje cells [254, 255]. However, in vitro studies to date have not found any 

influence of electrically evoked bursts upon parallel fiber to Purkinje cell synaptic 

transmission [243]. We saw considerable variability in burst rates between individual mice, 

and future work must identify the origins of this variability and the role of bursts in brain 

function. 

Relationship of Flares to Motor Behavior and Hemodynamics  

Prior work in vitro and in anesthetized animals has shown the involvement of 

astrocytic Ca2+ signaling in hemodynamic modulation [34, 228, 229, 256-258]. This suggests a 

possible link between flares and blood flow regulation. Thus, quantifying the kinetic 

relationships between locomotion, hemodynamics, and flares is essential for logically 

constraining the roles flares could play. Time scales of cerebral hemodynamic responses have 

been well reported [247, 248, 259], but we also confirmed basic kinetic features of the 

responses that occur in our mouse locomotor assay by using laser Doppler measurements of 

blood perfusion levels in the vermis (Figure S2, Supplemental Methods). Taken with our 

kinetic studies of flares and motor behavior, the data permit several conclusions about flares’ 

possible role in functional hyperemia. 

First, flares’ ~5 s rise time following locomotor onset is consistent with a possible role 

for flares in initiation of blood flow responses. In our locomotor assay flares and local blood 

perfusion levels rose over a very similar time course (Figure S2). Second, flares’ limited 

duration contrasts with the well documented finding that during motor activity the resulting 

hemodynamic up-regulation persists throughout the behavior [260]. Laser Doppler data 

confirmed this persistence in our mouse locomotor assay (Figure S2). Thus, flares do not have 

a role in sustaining hemodynamic responses, even if flares aid their initiation. Third, flares’ 
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refractory dynamics are reminiscent of the refractory character of hemodynamic regulation 

[247, 248]. Taken together, our data imply a potentially intricate relationship between flares 

and animal behavior. 

One possibility is flares occur in direct response to the neural activity underlying 

locomotion. Since Bergmann glia, like other cortical astrocytes, contact neuronal synapses and 

blood vessels, flares might mediate neural-driven blood flow increases. Another possibility is 

blood flow increases, not neural activity, trigger flares. Thus, flares might provide retrograde 

signaling from blood vessels to neuropil [261]. A third possibility is flares are part of a 

dynamical interplay between neurons and astrocytes that mediates animal behavior. For 

example, flares might cause Bergmann glia to release neuro-active molecules, in turn affecting 

the neural activity underlying locomotion. Other possibilities involve combinations of these 

three. To dissect these issues, microscopy in behaving mice must be combined with targeted 

manipulations of Bergmann glia, such as by genetic or optogenetic means. 
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FIGURES 

 

Figure 1. Two-Photon Microscopy in Behaving Mice 

(A) Two-photon microscopy in awake, head-restrained mice using an exercise ball. Mouse 

locomotion was tracked by video and an optical encoder on the ball.  

(B) Areas of lobules V, VI of the cerebellar vermis examined in this study (pink). Scale bar: 1 

mm.  

(C) Bergmann glial processes and somata in the molecular (upper) and Purkinje cell layers 
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(lower), respectively, were labeled with the Ca2+-indicator OGB-1-AM and identified based 

on morphology and counterstaining with SR101, an astrocyte marker. Scale bars: 25 µm.  

(D) Probability densities of image displacements in dorso-ventral, z (blue), medio-lateral, x 

(green), and rostro-caudal, y (red), dimensions. Insets show example traces of displacements 

in x-y and x-z planes during locomotion. Scale bars: Upper, 50 mm/s; Lower, 10 s and 5 µm.  

 

Figure 2. Ca2+-Excitation is Ongoing in Awake Resting Mice 

Ca2+-sparkles (A-D, red traces) appear in individual Bergmann glial fibers. Ca2+-bursts (A-B, 

E-H, green traces) spread as 3D radial waves over multiple Bergmann glia. 

(A) Cellular structures in the molecular layer labeled with OGB-1-AM. Ca2+ dynamics were 
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analyzed in regions of interest where fibers within palisades (yellow) had been identified by 

SR101 co-staining. A selection of fibers showing asynchronous sparkles and a burst are 

marked red and green, respectively.  Scale bar: 50 µm. 

(B) Traces of relative increases in OGB-1-AM fluorescence, ΔF (t)/F, from the 14 regions 

marked red in (A) and sorted by the onset time of Ca2+-excitation. Scale bars: 5 s, 10% ΔF 

(t)/F. 

(C) Image frames showing a Ca2+ sparkle. Scale bar: 10 µm.  

(D) Overlay of average (red) and individual sparkle time courses (black). Scale bars: 5 s, 10% 

ΔF (t)/F. 

(E) Images from a 3D recording showing ΔF (t)/F signals at different depths below the pia. 

Scale bar: 50 µm.  

(F) Top, average (green) and individual (black) burst time courses in awake mice. Bottom, 

averaged and normalized traces under four conditions: isoflurane-anesthetized (blue), awake 

resting (green), TTX- (red) and  γDGG-treated (orange). Scale bar: 5 s. 

(G) Top, locations and volumetric profiles of bursts detected by 3D imaging during an 8.2 min 

period. Colored outlines show extent of Ca2+ spread for each burst. Bottom, z-projection 

image.  

(H) Bursts have greater extent parallel to the long axis of the cerebellar folium, which lies 

perpendicular to the parasagittal planes of cerebellar cortex. Colored data points denote 

individual bursts recorded under the conditions noted in (F). 
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Figure 3. Motor Behavior Evokes Ca2+-Excitation Across Bergmann Glial Networks 

(A) Encoder trace of rotational speed of the exercise ball, showing multiple running bouts 

during a 9.8 min period. Scale bars: 50 s and 20 mm/s; the former also applies to (B). 

(B) Top, SR101 ΔF (t)/F traces from 291 glial fiber regions during the same time interval as in 
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(A). Fibers were sorted by x coordinate. Bottom, the same regions in OGB-1-AM images 

reliably exhibit concerted ΔF (t)/F increases during running. Signals of similar magnitude and 

time course are absent in the SR101 data. 

(C) OGB-1-AM ΔF (t)/F traces over the interval indicated in (B) by dashed lines. Flares are 

marked blue and are interleaved in time with sparkles (red) and bursts (green). Scale bar: 50 s. 

(D) Image frames of OGB-1-AM ΔF (t)/F increases during the flare indicated by dashed lines 

in (C). Scale bar: 100 µm. 

(E) Images from a 3D recording of ΔF (t)/F increases during a flare. 
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Figure 4. Locomotor Evoked Ca2+-Excitation 

(A) Traces revealing Ca2+ flares (bottom) as a function of locomotor activity (top), under four 

conditions, awake-untreated (green), PPADS- (purple), γDGG- (orange) and TTX-treated 

(red).  Ca2+ activity was quantified by rate of glial fiber activation per unit area. Upper scale 

bars, 50 s and 150 mm/s. Lower scale bars, 1 kHz/mm2.  

(B) Traces of running speed (left) and Ca2+-flares (right) triggered at movement onset (red 
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lines) in untreated, PPADS-, γDGG-, and TTX-treated mice. For each condition, traces are 

arranged by the pause duration after the prior movement. 

(C) Traces showing normalized time course of flare activation triggered upon movement onset 

(red line), for all (solid), brief (dotted), and extended movements (dashed). 

(D) Probability of observing a flare at locomotor initiation versus the pause duration between 

movements. Flares have a refractory period (compare panel (B)). 

 

Figure 5. The Astrocyte Marker SR101 Stains Bergmann Glial Cells in the Cerebellar 

Cortex  

Example images acquired by two-photon microscopy in anesthetized mice show co-staining 

(right) of Bergmann glial cell structures in the molecular (upper row) and Purkinje cell layer 

(lower row) after topical application of the red fluorescent dye SR101 (center) in transgenic 

mice expressing EGFP in astrocytes under control of the human S100β promoter (left). Scale 

bars: 25 µm. 
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Figure 6. Motor Behavior Evoked Ca2+-Excitation is Accompanied by Regional Increases 

in Blood Perfusion Levels 

(A) Concurrent example traces showing Ca2+-flare activity (bottom) and mouse running speed 

(top), for brief and extended running episodes. The green trace shows flare magnitudes, as 

quantified by the rate of Ca2+-activation in Bergmann glial fiber regions per unit area. Upper 

scale bars, 50 s and 150 mm/s. Lower scale bar, 1 kHz/mm2. 

(B) Concurrent example traces showing relative changes in regional blood perfusion levels as 

measured by laser Doppler flowmetry (bottom), and mouse running speed (top), for brief and 

extended running episodes. Upper scale bars, 50 s and 150 mm/s. Lower scale bar, 15%. 

(C) Overlay of the normalized Ca2+-flare activation (green) and blood perfusion increase 

(blue) triggered upon movement onset (vertical red lines) for all (left), brief (center), and 

extended movements (right), revealing similar kinetics during locomotor initiation. The solid, 

dotted, and dashed green traces are the same as those in Figure 4C. 

EXPERIMENTAL PROCEDURES 

Animals and Surgery 

All procedures were approved by the Stanford APLAC. We used male C57BL/6 mice 

(6-10 weeks old). Surgery was done under isoflurane (1.5–2.5%, mixed with 2.0 L/min O2). 

Body temperature was monitored with a thermistor underneath the torso and maintained at 36-

37°C using a heating blanket. We assessed depth of anesthesia by monitoring pinch 

withdrawal, eyelid and corneal reflexes, breathing rate, and vibrissae movements.  
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1–2 weeks prior to imaging the skull was exposed and cleaned above neocortex and 

cerebellum. A custom metal plate allowing cranial access and repeated head-fixation was 

fixed to the skull with dental acrylic (Coltene/Whaledent, H00335). 

 On the imaging day, a craniotomy (0.5–3.5 mm diameter) was opened (-6.5 mm 

posterior to bregma; 0.5 mm lateral). Exposed tissue was irrigated with warm artificial 

cerebral spinal fluid (ACSF; 125 mM NaCl, 5 mM KCl, 10 mM D-Glucose, 10 mM HEPES, 2 

mM CaCl2, 2 mM MgSO4; pH to 7.4 with NaOH). To dampen heartbeat- and breathing-

induced brain motion, the craniotomy was filled with agarose (1.5%; Type III-A, high EEO; 

Sigma) in ACSF and covered by a coverslip fixed to the head plate, creating an optical 

window. The dura was left intact for Ca2+-indicator injections and control experiments 

regarding mechanical stress, but generally removed just prior to agarose application to allow 

pharmacological interventions and electrical recordings. In some cases teflon-coated silver 

wires (A-M Systems, 785500 and 787000) were implanted for electro-corticogram (ECoG) 

recordings [262]. 

To note the coordinates studied, we re-anesthetized mice at the end of each 

experiment and marked recording sites with a water-repellent pen. We removed the brain and 

made digital images of the marked sites at several magnifications. We overlaid recording sites 

from different experiments to yield the outline of studied areas (Figure 1B). 

Indicator Labeling 

Targeted bulk-loading of cerebellar tissue with the Ca2+-indicator Oregon green 488 

1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetate-1 acetoxymethyl (OGB-1-AM; 

Molecular Probes) was done as described [235, 240, 263]. Concentrations of OGB-1-AM and 

DMSO in our pipette solution were 500 µM and 2-5%, respectively. To obtain a homogenous, 

widespread stain of the Purkinje cell and molecular layers we used several pressure ejections 

(3-3.5 psi; 1-2 min duration; Picospritzer III, General Valve, Fairfield, NJ). Typically five 

injections were performed in a grid pattern with ~150-250 µm spacing. To counterstain 

Bergmann glia, the red fluorescent astrocyte marker sulforhodamine 101 (SR101; 200-250 µM 

in ACSF; Invitrogen) was added to the injection solution or applied topically (1-3 min) in 

cases in which the dura was removed [240]. 



 

 115 

Imaging 

After surgical implantation of the head-plate and a recovery of 1-7 days, mice were 

habituated in 3-10 sessions (usually 1 session/day) to accept increasingly longer periods (15-

135 min sessions; 2.5-9.25 h total habituation time) of head restraint while on a 11.9-cm-

diameter exercise ball (Habitrail, 62065) covered with copper mesh. The ball rotated on one 

axis, allowing the animal to stride forward or backward at liberty.  

We used a custom upright two-photon microscope equipped with an ultrafast 

Ti:sapphire laser (Tsunami, Spectra-Physics), a nanofocusing system (P-725-PIFOC, Physik 

Instrumente), two detection channels, and a 20× water-immersion objective (Olympus, 0.95 

NA, XLUMPlanFl). To excite OGB-1-AM, the laser was tuned to 800 nm. For simultaneous 

excitation of OGB-1-AM and SR101 we used 800-820 nm. To minimize aftereffects of 

anesthesia, mice recovered from isoflurane for >60 min prior to recordings. To minimize the 

possibility of photo-induced alterations in physiology, the duration and average power of 

continuous illumination typically were <7 min and <35 mW at a given brain location. 

We used MP-Scope software for laser-scanning microscopy [264], which uses a 5 

MS/s data acquisition card (PCI-6110, National Instruments). Images were typically 256 × 

256 pixels (10.2–11.1 Hz frame rate) or 128 × 128 pixels (20.4 Hz). In 3D recordings, image 

stacks contained 5-20 optical sections acquired at 5, 10, or 20 µm axial spacing (1-4 Hz stack 

acquisition rate) 

Behavioral Analysis 

Mouse behavior was recorded in Mini-DV format using a digital Camcorder (Sony 

DCR-VX2000). Rotations of the exercise ball were monitored using an optical encoder (US 

Digital, E7PD-720-118).  

Electrophysiology 

For ECoG recording the stripped tip of a 140-µm-diameter Teflon-coated silver wire 

(A-M Systems, 785500) was placed on the pial surface in one corner of the craniotomy. A 

330-µm-diameter reference electrode (A-M Systems, 787000) was placed over neocortex near 

bregma through a small hole in the parietal bone. ECoG signals were acquired using a 

differential AC amplifier (A-M Systems, 1700; gain, 1,000-10,000; Notch filtered). 
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Pharmacology 

TTX (25-125 µM), γDGG (50 mM) and PPADS (1-2 mM) were dissolved in ACSF 

and applied in aqueous solution onto the optical window in the cranium. To facilitate drug 

entry into tissue the agarose and cover slip were cut on two sides to be flush with the 

craniotomy, allowing direct contact between reservoirs of solution and the agarose. Drug 

action was verified by observing changes in ECoG recordings and that Purkinje cells stained 

by OGB-1-AM showed a complete silencing of climbing fiber driven Ca2+-spiking activity 

under TTX and γDGG. Also, TTX sometimes led to changes in mouse gait. 

Data Analysis 

Data analysis algorithms were written in MATLAB (Mathworks). All error values 

reported in the text are standard deviations, except for the errors in event percentages and 

rates, which are 68% confidence intervals. See Supplemental Methods for details. 

SUPPLEMENTAL METHODS 

Laser Doppler Studies 

We tracked blood perfusion levels using a laser Doppler instrument (PF-5010-LDPM, 

Perimed) with a 1-mm diameter fiber-optic probe (PR 407-1) that we affixed either to the 

cranium or an optical window using a miniature probe holder (PH 07-6). A smoothing filter 

with a 0.03 s time-constant was applied to all perfusion traces. Perfusion measurements were 

performed either through the intact skull or using the same preparation as described in 

Experimental Procedures, Pharmacology. To assess the extent of motion artifacts, we 

performed control experiments by placing the fiber-optic probe in a colloidal suspension of 

latex particles (PF 1001, Perimed) that is normally used for probe calibration, within either the 

miniature probe holder or the head of the screw connecting the head plate and head holder.  

Analysis of Laser Doppler Flowmetry Signals 

We normalized laser Doppler signals by dividing by the median signal during non-

movement periods, defined as when the speed of the exercise ball was <10 mm/s. We then 

detected transient increases in blood perfusion in a manner analogous to the detection of 

exercise ball rotation and Ca2+ flares (see below; the thresholds for blood perfusion event 
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onset and offset were 15% and 10%, respectively).  

Transgenic Animals 

To confirm that the astrocyte marker SR101 [240] labels Bergmann glia in the 

cerebellum, we performed dual-color imaging studies of mice expressing EGFP under the 

control of the human S100β promoter [265] (5.5-6 months old; C57BL/6 genetic background) 

(Figure S1). 

General Methods of Image Analysis 

We first corrected any lateral motion artifacts in the imaging data using an image 

registration algorithm [266]. We corrected for photobleaching and, in dual color experiments 

for overlap in the emission spectra of the two dyes. Regions of interest (ROIs) containing glial 

fiber palisades were identified in images by applying a spatial high-pass filter and then finding 

contiguous regions above a threshold intensity value. To obtain functional Ca2+ signals from 

Bergmann glial fibers we examined the glial palisade ROIs within OGB-1-AM images and 

extracted traces of normalized fluorescence, ΔF(t)/F, for each ROI (Figures 2 and 3). 

Ca2+ sparkles were identified as all instances in which ΔF(t)/F traces from within an 

individual glial fiber ROI crossed a threshold value (10%). Ca2+ bursts are not confined to 

glial palisades and we identified these by visual screening of temporally low-pass filtered 

versions of the movie data. We estimated the temporal and lateral spatial profiles of Ca2+ 

bursts by fitting a convolution of two exponentials and 2D Gaussians to the time courses and 

maximum intensity projections, respectively (Figure 2).  

Ca2+ flares were identified as instances in which the instantaneous rate of Ca2+ 

sparkles detected across the entire field of view crossed a threshold value (Figures 3 and 4). 

We used records of the exercise ball's rotational speed to perform reverse correlation analyses, 

in which we computed the mean rates of sparkling immediately before and after specified 

patterns of mouse locomotion. See below for more details. 

Correction of Movement Artifacts 

To correct lateral displacements of the entire field of view, we used the ImageJ plugin 

TurboReg [266] to register each movie frame with respect to a reference frame, generally the 

first frame of the movie, by minimizing the mean square difference between the pixel 
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intensities. Movies were then cropped to the largest region that remained within the field of 

view throughout the recording duration. To estimate the severity of image displacements 

during periods of locomotion, we calculated the standard deviation of the displacements used 

for image registration. Axial displacements were estimated using movies recorded within a 

coronal optical plane. 

Corrections for Overlap in the Emission Spectra of OGB-1-AM and SR101 

Due to overlapping emission spectra, we observed modest bleed through of functional 

OGB-1-AM signals into the red spectral detection channel used to capture fluorescence 

signals from the non-functional, astrocyte marker SR101. To calibrate this overlap, we used 

large-amplitude bursts occurring during periods when the mouse was standing still to measure 

the fixed ratio of OGB-1-AM signals captured on the red and green detection channels. We 

calculated the relative changes in OGB-1-AM fluorescence detected in each color channel by 

normalizing each detector’s signal by its mean over a brief epoch (<10 s) prior to each burst. 

We then determined the slope of the line that best fit the co-variation of the two normalized 

signals, which varied together in a highly linear manner (r = 0.9 ± 0.08). By using data from 

two or more bursts we were able to fit the slope of the linear dependence between the two 

channels with <5% uncertainty. For example, the recording used for Figures 3B-D exhibited a 

bleed through ratio of 0.23 ± 0.008 (95% confidence interval). We multiplied OGB-1-AM 

signals by this ratio and subtracted the result from the red fluorescence signals to obtain the 

spectrally unmixed SR101 signals, as shown in Figure 3B. 

Correction of Fluorescence Bleaching 

We observed modest (<5%) declines in the mean fluorescence over the entire field of 

view during each recording lasting <10 min. We compensated for this decline by fitting the 

traces of normalized fluorescence with an exponentially decaying function. We then divided 

the fluorescence in each movie frame by the instantaneous value of the fitted decay function. 

For example, the decay time constants for Figures 3B-D were 53,000 s (OGB-1-AM) and 

14,000 s (SR101), which accounted for declines in average fluorescence over the recording of 

1.1% and 4.4%, respectively. 
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Computation of Normalized Changes in Fluorescence, ΔF(t)/F 

We normalized traces of fluorescence intensity at each movie pixel by dividing by the 

mean fluorescence, F, over a reference period, generally the entire duration of the recording at 

that field of view. Data traces were smoothed by convolution with a Gaussian filter of unity 

gain and either 0.5 s (Figure 2B-D) or 0.7 s (Figures 3 and 4) standard deviation. The resulting 

traces were downsampled to ~2 Hz. 

Identification of Glial Palisades 

We first averaged the fluorescence intensity in the red detection channel, or in the 

green channel for single-color experiments, over all recorded time frames. In most 

experiments, glial palisades appeared with different relative intensity in both detection 

channels. In these cases we used the ratio of fluorescence in each channel to emphasize glial-

specific peaks in fluorescence. We then sharpened the resulting image by convolving with the 

3 × 3 digital high-pass filter kernel 
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where k was either 8 or 12. We identified regions of interest (ROIs) corresponding to 

Bergmann glial processes by applying a threshold to the sharpened image and isolating 

contiguous regions within the resulting binary mask. We refined the definition of palisade 

ROIs by setting a maximum size criterion of ~20 µm2. In dual-color experiments, we observed 

that large (>40 µm2 area), brightly labeled structures in the OGB-1-AM channel generally 

corresponded to interneuron cell bodies not labeled by the astrocyte marker SR101. We 

therefore excluded these large ROIs from further analysis in single-color experiments, for 

which only OGB-1-AM signals were available. 

Detection of Fluorescence Increases within Individual Glial ROIs.  

We observed Ca2+-transient related increases in fluorescence within individual glial 

ROIs during sparkles, bursts, and flares (Figure 3C). For each ROI, these transients were 

identified by finding peaks in the smoothed normalized fluorescence, ΔF(t)/F, that exceeded a 

threshold value, generally a 10% increase. To obtain a conservative determination of the rate 
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of fluorescence transients, we imposed a minimum interval, generally 10 s, between the 

individual fluorescence peaks detected within each ROI to prevent redundant detection of 

multiple peaks within individual events (Figure 2B). To avoid including noisy signals 

resulting in high false positive detection rates, we excluded ROIs that showed >5 times the 

median rate of Ca2+-transients for each movie. 

Calculation of Event Rates and Confidence Intervals. 

Confidence intervals for all event rates that we report were estimated by making the 

statistical assumption that the number of event occurrences is Poisson distributed. 

Statistical Tests of Significant Difference  

We used Wilcoxon rank sum tests to assess the significance of differences between 

median Ca2+ transient characteristics in each of the five experimental conditions: anesthetized, 

awake, TTX-, γDGG-, and PPADS-treated awake. For analyzing the anisotropic spread of 

Ca2+ during bursts (see below), we hypothesized that the spread in the direction parallel to the 

cerebellar folium is greater than the spread perpendicular to the folium. To test this, we used a 

Wilcoxon signed rank test of the hypothesis that the difference between the two radii has a 

median of zero. Because we measured a large number of individual events (n = 95 across all 

conditions), we used a normal approximation for the distribution of the test statistic to 

compute the p-value. 

To test the significance of differences in the frequencies of sparkles and bursts across 

the different pharmacological conditions used within individual experiments, we used a 

likelihood ratio test based on the assumption that the numbers of events were Poisson 

distributed. In each condition, i, we observed ni events in time ti over a field of view area ai. 

The maximum likelihood estimate of the event rate was thus ri = ni /(ti ai). To test whether the 

rates under the two different conditions were significantly different, we used a likelihood ratio 

test. This compared the likelihoods of obtaining the total ni + nj events given two distinct rates 

for the two experiments versus with one estimated rate, (ni + nj)/(tiai + tjaj), for both 

conditions. The resulting likelihood ratio, 

 

LR =
ri
ni rj

n j
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has an associated p-value, which is found by calculating 
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with the cumulative chi-square distribution with 1 degree of freedom. 

Analysis of Ca2+ Sparkles 

Sparkles were detected within individual glial ROIs as described above. The duration 

of each event was defined as the interval from when the signal first exceeded the detection 

threshold (10% ΔF(t)/F) to when the signal returned below this level.   

Analysis of Ca2+ Bursts 

Analysis of Two-Dimensional Spatial Profiles 

We identified the approximate location and onset time of each burst by visual 

inspection of the normalized fluorescence data. Only events that did not extend beyond the 

recording field of view were used for further analysis of spatial profiles. For each event we 

computed the maximum of the normalized fluorescence in each pixel during the first 7 s after 

event onset. We rotated the resulting image to align it with a local coordinate system in which 

the long axes of Purkinje cell dendrites were oriented along the y-axis. We then used nonlinear 

least squares regression (Levenberg-Marquardt algorithm; MATLAB routine nlinfit) to fit the 

shape of the maximum intensity profile with a two-dimensional Gaussian function. The fit was 

constrained to have its principal axes oriented along the x and y directions. This fitting 

procedure produced reasonable estimates of burst spatial extent, as judged by inspection of the 

fit and its residual, even in cases in which animal movement or blood flow influenced the 

maximum intensity projection. However, for the bursts of greatest magnitude we noticed that 

the maximum intensity projection deviated from the fitted Gaussian, exhibiting a flatter central 

region and more sharply defined edges. The diameters parallel and perpendicular to the folium 

plotted in Figure 2H were defined as four times the standard deviation values from the 

Gaussian fit. 

Analysis of Three-Dimensional Spatial Profiles  

To characterize the volumetric structure of bursts, we analyzed as described above 

each of the lateral planes sampled within the three-dimensional (3D) recording. We smoothed 

individual image frames by convolution with a Gaussian that had a standard deviation of 1 

pixel, approximately 2 µm across. Because the pixel spacing in the axial dimension was about 

5 µm, or roughly twice as large as the lateral pixel spacing, we linearly interpolated the data at 
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planes midway between each scan plane. We also smoothed the temporal dynamics, as 

described above. 

The normalized fluorescence data, represented as a four-dimensional array of intensity 

values at every spatial point (x,y,z) and time frame (t), were examined in three ways. We 

inspected the complete set of information available about each event from the collection of 

movie frames acquired across a series of optical planes (Figure 2E). We viewed the maximal 

spatial extent of each event using projections of maximum intensity over time and one spatial 

dimension into the x-y, x-z, and y-z planes. 

Finally, to compare multiple events recorded within the same imaging volume, we 

used a sequence of contours, each of which represented the spatial extent of the burst at a 

distinct depth beneath the brain surface (Figure 2G). We determined the contours using the 

maximum intensity projection over time for each event. We smoothed each z-slice of these 

projections by convolving with a Gaussian (5 µm s.d.), and applied a threshold to the result to 

produce a binary mask of the region for which (ΔF(t)/F)max ≥ 15%. Isolated pixels or groups of 

pixels that were not contiguous with the main volume of the event were excluded. We used the 

remaining connected volume to create the contours at each imaging plane (Figure 2G). 

The grayscale background images in Figure 2G show the patterns of OGB-1-AM 

labeling at the boundaries of the imaging volume. The areas covered by the contours of each 

burst, as projected onto the x-y plane, are shown at the bottom of Figure 2G. The cross-

sectional area at each scan plane was used to assess the depth profile of the events.  

To quantify the spatial extent and total volume of bursts in 3 spatial dimensions, we 

computed the maximum normalized fluorescence intensity at each pixel during the first 7 s of 

each event recorded during 3D imaging experiments. We excluded events that occurred near 

any of the lateral edges of the imaging volume. Because the frame rate for volumetric imaging  

(~1-2.5 Hz) was lower than the frame rate for 2D-imaging, we chose to smooth the event 

shape in each imaging plane using a Gaussian spatial filter (5 µm s.d.), rather than using a 

temporal filter as in 2D analysis. The filter width was chosen to match the minimum spacing 

between imaging planes in the axial dimension. We fit the event shape with a three-

dimensional Gaussian ellipsoid with eight free parameters (3 coordinates for the center of 

mass, 3 independent spatial widths, background intensity, and event amplitude). To correct for 

the systematic bias introduced into the fit parameters by Gaussian convolution, we subtracted 
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the variance of the smoothing filter from the fit variances. The volume of each event was 

defined as the volume of the ellipsoid contained within two standard deviations:  

 

V =
4

3
! (2" x )(2" y )(2" z) . 

Analysis of Temporal Dynamics  

To characterize the temporal dynamics of bursts, we used the average fluorescence 

over the 7 s preceding the event onset to estimate background fluorescence. We then averaged 

fluorescence changes across an elliptically shaped ROI defined as the boundary at which the 

Gaussian spatial fit to the event (see above) falls to 1/e of its peak value. We found that the 

normalized fluorescence traces were well fit (r = 0.9 ± 0.1 s.d.) by a convolution of two 

exponentials, which has four free parameters, amplitude (A), time constants for the rising (τr) 

and decaying (τd) phases, and onset time (t0):  
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We employed MATLAB’s Trust-Region nonlinear least squares solver with 

constraints to perform the fits, which were then used to align and normalize the individual 

traces and to compute the average of the normalized traces in each experimental condition 

(Figure 2F). In many cases (81% of bursts observed in the control condition), the best fit time 

constants were equal, 
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, to within 1%. In this case the fit is equivalent to a first-order 

alpha function with a single time constant: 
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Analysis of Somatic Bergmann Glial Ca2+ Transients 

Ca2+-transient related increases in fluorescence within individual somatic ROIs were 

identified by finding peaks in the smoothed normalized fluorescence, ΔF(t)/F, that exceeded a 

threshold value, generally a 10% increase.  
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Analysis of Ca2+ Flares 

Analysis of Locomotor Speed 

We smoothed and downsampled to ~20 Hz the data from the optical encoder that 

reports the rotational velocity of the exercise ball. We further smoothed the signal in time 

(Gaussian filter, s.d. of 0.7 s). The onset of locomotion was defined as the time at which the 

smoothed running speed increased over a threshold of 20 mm/s. Offset was defined as the time 

at which the speed subsequently fell below 10 mm/s. These thresholds were chosen to avoid 

the detection of small movements and to ignore small dips in speed during otherwise 

continuous bouts of running. 

Detection of Ca2+ Flares  

Within each ROI we first detected all events in which a local peak in the smoothed 

fluorescence signal was achieved and exceeded a fixed threshold (see above; threshold was 

10% ΔF(t)/F and minimum inter-event interval was 10 s). We calculated the mean 

instantaneous rate of glial Ca2+ events within the field of view by counting all events occurring 

at each movie time frame, and multiplying by the frame rate and dividing by the field of view 

area. The rate of glial Ca2+ events was then smoothed using a Gaussian filter (see above; 

Gaussian s.d. was 2 s). The onset and offset times of Ca2+ flares were defined analogously to 

the detection of movements by the times at which the smoothed rate crossed a threshold. 

Because of differences in the signal/noise ratio across experiments, we adjusted these 

thresholds manually for each recording within the range from 10-220 Hz/mm2. For this 

analysis we excluded epochs of ~10 s duration around the time of each burst, resulting in 

minimal loss of data since bursts occurred very sparsely. 

Movement-Triggered Averaging of Glial Ca2+ Signals   

We examined how Ca2+ flares depend on two aspects of locomotor behavior. We first 

studied the impact of the duration of running bouts on the physiological event dynamics. We 

assigned movements to three categories containing either all movements, brief movements (<5 

s duration from onset to offset), or extended movements (>15 s duration). To prevent 

interference from recently completed bouts of running (see below), we excluded movements 

that began within a short time (10 s) after the offset of another movement or, for the first 

movement in each recording, after the start of the recording. For every movement in each of 

the three duration categories, we determined whether the corresponding signal (Ca2+ event rate 
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in Bergmann glial fibers) during a period from 10 s before to 25 s after movement onset 

exceeded a threshold (20 Hz/mm2). We aligned all such signals to the start of the movement 

and computed the average (Figure 4C). 

Next we examined the impact of the pause duration, defined as the time from the 

offset of the previous bout of movement to the onset of the current movement, on the 

probability of observing a Ca2+ flare (Figure 4D). We classified all movements based on their 

inter-movement pause into logarithmically spaced bins. For this analysis we excluded the first 

running bout in each recording, for which we could not determine the pause time. For each 

movement we determined whether there was a supra-threshold increase in the corresponding 

glial Ca2+ event rate signal within 10 s of movement onset.  Within each bin, the probability of 

a physiological response at movement onset was defined as the number of movements 

accompanied by a supra-threshold increase in the physiological signal divided by the total 

number of movements. We estimated 68% confidence intervals for our determinations of 

response probability by assuming the responses were governed by a binomial distribution. We 

performed a logistic regression to fit the binary flare occurrence data to a two-parameter 

sigmoid: 

 

P =
1

1+ (IMI /IMI
0
)
x

, 

where IMI is the inter-movement interval and IMI0 is a fit parameter corresponding to the 

pause value for which the probability of flare occurrence was 50%. The fit parameters for the 

line shown in Figure 4D were IMI0
 = 27.5 s and x = -1.42. 
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Chapter 5: Automated analysis of cellular signals from large-scale 

calcium-imaging data 

ABSTRACT 

Recent advances in fluorescence imaging permit studies of Ca2+-dynamics within 

large numbers of cells, in anesthetized and awake behaving animals. However, 

unlike for electrophysiological studies standardized algorithms for assigning 

optically recorded signals to individual cells have not yet emerged. Here we 

describe an automated sorting procedure that combines independent component 

analysis and image segmentation for extracting cells’ locations and their 

dynamics with minimal human supervision. In validation studies using simulated 

data, automated sorting significantly improved estimation of cellular signals 

compared to conventional analysis based on image regions of interest. We used 

automated procedures to analyze data recorded by two-photon Ca2+-imaging in 

the cerebellar vermis of awake behaving mice. Our analysis yielded simultaneous 

Ca2+-activity traces for up to >100 Purkinje cells and Bergmann glia from single 

recordings. Using this approach, we found microzones of Purkinje cells that were 

stable across behavioral states and in which synchronous Ca2+-spiking rose 

significantly during locomotion. 

INTRODUCTION 

Techniques for delivering fluorescent Ca2+-indicators into large numbers of cells have 

enabled recent in vivo imaging studies of the dynamics of hundreds of neurons and astrocytes 

[18, 32, 48, 225, 226, 267-270]. Fast, three-dimensional laser-scanning microscopy has further 

increased opportunities for observing Ca2+ activity across many cells [219, 271, 272]. 

However, by comparison to these advances in staining and imaging, state-of-the-art 

computational techniques for analysis of Ca2+-imaging data lag behind and are mainly region 

of interest (ROI) analyses. These ROI analyses have typically been manual [28, 267, 272, 
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273], or semi-automated [40] means of locating cells within movie data and cannot be easily 

scaled to handle the largest available data sets without undue human labor. Moreover, ROI 

analyses have largely been based on heuristic, pre-conceived notions of what defines the 

geometric and other characteristics of specific cell types [40, 269, 272], rather than general 

statistical principles for decomposing an imaging data set into its constituent signal sources. 

This mismatch between the current ability to perform imaging experiments and the capability 

to analyze the resulting data sets significantly restricts the capacity to attain biological 

insights.  

In several respects, the present state of affairs for Ca2+-imaging resembles that of in 

vivo electrophysiology in the early 1990s, when multi-electrode techniques were blossoming 

but standardized algorithms for spike sorting had yet to appear. Today, automated spike 

sorting is widely applied in multi-electrode studies to assign spikes to individual cells [38, 

222, 274], and there are several commercial software packages for the task. Although 

improvements to spike sorting routines justifiably continue, the accurate and efficient 

assignment of spikes to single cell units has enabled key advances in our understanding of 

neural coding in sensory, motor, and cognitive pathways [37, 275-278]. By analogy, an 

automated procedure capable of extracting intracellular Ca2+-signals from optical recordings 

of hundreds of cells would become a crucial enabler for scientific advances achieved by brain 

imaging. However, the computational challenges in devising such a procedure are distinct 

from those posed by multi-electrode recordings.  

Spike sorting for multi-electrode recordings tends to rely on two basic ideas. First, the 

temporal waveforms for spikes generated by different individual cells are often sufficiently 

dissimilar so as to provide the basis for spike classification. Second, the activity of individual 

cells is often recorded on multiple electrodes, which generally allows a spatial location to be 

assigned to each somatic action potential based on the electrode positions and the relative 

amplitude of the spike on each recording channel.  

Unfortunately, neither of these two means for sorting signals works well for imaging 

data. First, the temporal waveforms for Ca2+-activity are strongly dictated by the dye’s kinetics 

of Ca2+ binding and unbinding [279], and so do not provide strong signatures of individual 

cells’ identities. Second, image pixels can contain a combination of signals from neuropil, 

multiple neurons and astrocytes, and various sources of noise and movement artifacts. It is 

thus nontrivial to disentangle the signals from the individual sources and to find the shapes 
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and locations of each cell. What is needed is a guiding principle for analysis of imaging data 

that can be used to identify cells’ locations in the field of view and to extract reconstructions 

of activity time courses. 

We formulated such a principle by considering the regulation of intracellular [Ca2+], 

which can transiently increase ~100-fold above background levels during cellular events such 

as action potentials. This dynamic implies that brief periods of elevated [Ca2+] are typically 

sparsely interspersed in time among many more background-dominated time frames. 

Sparseness also holds in the spatial domain when only a small subset of pixels collects signals 

from each individual cell. Thus, temporal and spatial sparseness should be generic features of 

the Ca2+ signals in large-scale imaging data. Sparseness also typically distinguishes these 

signals from movement artifacts and other noise sources. Further, sparseness can be quantified 

by simple statistical measures, such as the skewness of amplitude distributions. 

This reasoning led us to an algorithm that estimates sparsely distributed cellular 

locations and time courses by parsing our data into a combination of signals, each of which 

independently exhibits a high degree of skewness. To do this, our algorithm relies on an 

independent component analysis (ICA) [41, 42, 280], which forms the core of our 4-stage data 

processing protocol (Figure 1). Unlike conventional approaches using manual or semi-

automated ROI analysis, ICA requires little user input or supervision and does not rely on 

preconceptions about the geometries or activity patterns of the cells to be found. Thus, our 

automated approach can be readily applied when there are many hundreds of cells, including 

those with unknown dynamical or morphological signatures. 

We validated our protocol using simulated movies designed to mimic Ca2+-imaging 

data. These simulations permitted detailed studies of how well Ca2+ signals can be extracted 

by cell sorting. The signals and noise in the artificial data were similar to that of real data we 

acquired in cerebellar cortex. The simulations revealed a graceful degradation in the 

performance of the automated cell sorting procedures as the signal quality of the data 

decreased; although fewer cells were recovered from noisy data, those cells that were 

identified yielded activity traces of high fidelity to the actual Ca2+-dynamics. By comparison, 

a semi-automated ROI analysis achieved comparable performance only for movies with low 

noise levels and more restricted fields of view.  

We further tested our analysis on data recorded by two-photon microscopy in the 

cerebellar vermis of awake, behaving mice. The signals included dendritic Ca2+ spikes and 
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astrocytic Ca2+ transients from large numbers of Purkinje cells and Bergmann glia, 

respectively. Despite that the neuronal signals evolved one to two orders of magnitude faster 

than the glial signals, automated cell sorting successfully extracted Ca2+ signals from 

populations of up to >100 total Purkinje cells and Bergmann glia. The observed dendritic Ca2+ 

spikes in the Purkinje cells represent the Ca2+ component of these cells’ complex (Na+ and 

Ca2+) spikes, which we verified through simultaneous optical and electrophysiological 

recordings [23, 40]. 

To illustrate the utility of our algorithm for obtaining physiological insight, we applied 

our automated procedures to study the spatiotemporal organization of Purkinje cells’ Ca2+-

spiking activity in vivo. We found that in cerebellar lobules V and VI synchronously active 

cells cluster into local neighborhoods extending ~7-18 cells across in the medio-lateral 

dimension. We identify these clusters as the cerebellar microzones, small patches of Purkinje 

cells receiving similar climbing fiber input [44]. The width of the patches has been estimated 

as ~200 µm  [44], but these inferences from electrophysiological studies were probably 

overestimates and did not permit conclusions about whether adjacent microzones are precisely 

demarcated from one another or merge smoothly. We found repeatedly that the cerebellar 

microzones of awake animals have sharply delineated medio-lateral boundaries and 

encompass cells having significantly greater synchronous activity with each other than with 

cells in other microzones. Our results complement prior studies of Purkinje cells in awake 

animals using electrode arrays, which showed complex spiking synchrony exists in bands 

extending millimeter-sized distances in the rostral-caudal dimension [46, 89]. However, the 

250-µm-spacing between electrodes used in those studies, which permitted the finding on the 

rostral-caudal extent of synchrony, also precluded fine resolution of microzone structure in the 

medio-lateral direction. 

In distinction to prior fluorescence imaging studies of cerebellar organization in 

anesthetized animals [40, 281], our studies in awake animals provided the opportunity to 

examine the modulation of microzonal activity by motor behavior. We sought to address the 

longstanding debate on whether microzones have stable anatomical boundaries [44], or are 

dynamically changing ensembles whose cellular constituents vary across behavioral states [46, 

89]. We observed that during animal locomotion on an exercise ball the basic spatial 

organization of correlated Purkinje cell Ca2+ activity was unchanged from that seen in awake 

but resting animals. Thus, our data provide no evidence for dynamical flexibility in the 
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cellular composition of microzones but rather support the hypothesis that microzones are 

stationary anatomical entities. However, during locomotor behavior the levels of synchronous 

Ca2+ activation rose within individual microzones but decreased between adjacent microzones. 

Thus, microzones not only retained stable boundaries across different behavioral states but 

also increased in prominence during motor behavior. These findings reveal basic features of 

cerebellar dynamics and highlight the impact of automated procedures for analyzing imaging 

data. 

RESULTS 

Basic Principles for Extracting Cellular Signals from Imaging Data 

The purpose of cell sorting is to identify a set of spatial filters and corresponding time 

traces that respectively represent the spatial locations and temporal dynamics of individual 

cells (Figure 1A). We devised a procedure to do this in four stages (Figure 1B), the first two of 

which respectively involve principal and independent component analyses and comprise the 

theoretical focus of this article (Figures 1-4). 

The signals to be found are buried within high-dimensional imaging data sets that 

might contain Nx ~105 pixels and Nt
 ~104 time frames. The first stage of analysis should reduce 

this dimensionality, since otherwise specifying individual cells’ spatial filters and time courses 

would require a large set of parameters for each cell. In principle these parameters could be 

found, but tuning many parameters can hamper signal extraction techniques [282]. Ideally, a 

dimensional reduction of the data should discard dimensions that contain mainly noise and not 

signals. We did this by using an established approach, principal component analysis (PCA), to 

find and then discard dimensions that mainly encoded noise [283].  

PCA identifies a linear transformation of the data yielding a set of basis vectors, the 

principal components, that are rank ordered by the variance of the signals along each basis 

vector. Lower ranked components have the highest signal variances. Thus, truncation of 

higher ranked components with smaller variances often does not interfere with an approximate 

reconstruction of the data. On the contrary, if ongoing background noise has a smaller 

variance than transient but strong signals, then removing higher order components from the 

data representation can eliminate substantial noise. To do this, one calculates the principal 

components’ variances for both the real data and a reference movie composed of uncorrelated, 
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Gaussian noise at each pixel and time frame [284]. The two variance spectra are compared to 

find the data principal components whose variance is below the noise floor (Experimental 

Procedures). In our cerebellar Ca2+-imaging studies, after this truncation of noise components 

we achieved data of a reduced dimensionality, K, much less than either Nx or Nt. Nonetheless, 

although PCA is an efficient means for separating signals from background noise, PCA alone 

cannot isolate Ca2+ signals from individual cells. 

PCA by itself is ill suited for cell sorting since it relies on differences in signal 

variance to identify data components; in practice temporal variations in different cells’ 

fluorescence signals tend to be of similar amplitude. Thus, each principal component generally 

has a mix of signals from multiple cells. Instead, one seeks a set of signal sources reflecting 

individual cells. The intuitive expectation is that such sources should be spatially localized, 

with a sparse spatial distribution of pixel weights for each cell. Thus, the distributions of pixel 

weights for each cell’s spatial filter should be highly skewed, with most pixels having almost 

no weight and a few having strong weight at the cell’s location. A basic measure of sparseness 

for such asymmetric distributions is the skewness, defined as the third moment normalized by 

the cube of the standard deviation. Skewness thus provides a useful means of assessing spatial 

sparseness and searching for signatures of individual cells’ dynamics. 

Similarly, one also expects many cells will have sparse signals in the temporal 

domain, since brief rises or bursts in fluorescence will stand out against ongoing background 

noise. If the times between the brief rises in signal are greater than the signals’ durations, then 

the distribution of signals in the time traces will be sparse and skewed. (Please see Discussion 

concerning when this assumption is invalid). These expectations regarding the spatiotemporal 

distibutions of Ca2+ signals motivated our choice of using independent component analysis 

(ICA) to extract cellular signals from the K dimensions remaining after PCA. 

ICA is well suited to this task, since it is designed to seek pairs of spatial filters and 

time traces that are sparse and statistically independent of one another [41, 42, 280, 285] 

(Experimental Procedures). Signals from different cells generally show individual dynamics 

that are sufficiently independent to make ICA a good tool for signal separation. In practice, we 

found that cells’ activities can actually have significant correlations and ICA will still work 

well. This is so even for cell pairs with moderately high correlation coefficients.  

We used a version of the FastICA algorithm, which maximizes a statistical objective 

function and can combine spatial and temporal information [286]. This objective function is a 
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measure of the sparseness of the extracted signals, and we used a combination of spatial and 

temporal skewness for this purpose. Although ICA is conceptually more complex than PCA, 

the ICA stage of our analysis is the more efficient of the two computationally. PCA requires 

all the raw data, and with computation of K principal components the number of operations 

rises as KNx Nt
2 (assuming Nx >Nt). For the ICA stage this cost rises only as K2 (Nx + Nt). For 

example, in the analysis below of our cerebellar recordings for which K ~102, Nx ~105, and 

Nt ~104, PCA took ~10-30 min of processing time, but ICA generally took < 1 min. A main 

issue in this analysis was whether ICA’s assumption that Ca2+ signals are spatiotemporally 

sparse and statistically independent could be validated in the live brain. 

ICA Yields Physiological Ca2+ Signals That Are Statistically Sparse and Skew 

We examined the sparseness of Ca2+ signals recorded by two-photon microscopy in 

the cerebellar vermis of awake, head-restrained mice (Figures 2A-2E). We used multi-cell 

bolus loading of the Ca2+-indicator Oregon Green 488 BAPTA-1-AM to label neurons and 

astrocytes in the cerebellar molecular layer [40, 225, 226, 287] (Supplemental Experimental 

Procedures). The mice stood on an exercise ball and could walk or run at liberty during 

imaging [28, 287]. This approach permitted optical recording of the dendritic Ca2+ spikes that 

are associated with complex (Na+ and Ca2+) action potentials in Purkinje neurons [23, 40]. We 

also observed Ca2+ activation in Bergmann glial fibers [287]. Application of PCA to the Ca2+-

imaging data yielded principal components that were generally not spatially localized and 

failed to isolate individual cells’ activities (Figures 2A and 2B, top row). Distributions of 

signal values along the principal component vectors were highly symmetric and approximately 

Gaussian (Figure 2C, right) and did not separate Ca2+ transients from background noise. 

However, ICA transformed these principal components into new basis vectors with more 

distinctive properties.  

A majority of independent components had spatial filters far more localized than those 

of the principal components and could reasonably represent individual cells (Figures 2A and 

2B, bottom row). As hypothesized, spatial filters found by ICA had sparse, highly skewed 

distributions, with the weights of small subsets of pixels being up to 19 standard deviations 

greater than background pixels (Figure 2C, left). For example, many of the localized ICA 

spatial filters from our cerebellar recordings resembled a stripe in the rostral-caudal direction. 

This is the expected optical cross-section through the dendritic tree of a single Purkinje cell 
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(Figure 2A, bottom), since these dendritic trees are nearly planar and lie perpendicular to the 

field of view [23, 40]. The stripes’ widths (7.0 ± 2.3  µm, mean ± s.d.; n=199 dendrites in 5 

mice) and lengths (90 ± 40 µm) as estimated by twice the standard deviations of Gaussian fits 

were consistent with anatomically derived values [288, 289] and those reported in prior in vivo 

Ca2+-imaging studies of Purkinje cells [23, 40, 226]. These elongated filters found by ICA had 

their long axes perpendicular to the folium of the cerebellar cortex and their short axes aligned 

with the folium. 

In the temporal domain, Ca2+ activity traces of the independent components also had 

sparse statistics. Unlike with principal components, signal distributions were asymmetric and 

highly non-Gaussian (Figure 2C, right). The asymmetry arose because there was a large 

fraction of time frames during which individual cells were inactive. Transient rises in [Ca2+] 

interrupted Gaussian distributed noise fluctuations and resulted in a sparsely distributed set of 

time frames during which fluorescence signals increased by up to eight standard deviations 

(Figure 2C, right). For the striped independent components representing Purkinje cell 

dendritric trees, the time traces yielded similar Ca2+ spiking rates and spike waveforms as 

those from prior manual and semi-automated ROI analyses of cerebellar Ca2+-imaging data 

[23, 40, 226]. 

After verifying the sparseness of signals identified by ICA, we also examined the 

independence of the signals’ dynamics by examining joint distributions of signals from pairs 

of independent components, each representing one Purkinje cell. The example shown in 

Figure 2D (bottom) is typical of 276 such pairs we studied. During most time frames, signals 

in both cells clustered close to the mean background levels. Each cell was active during a 

subset of time frames, and the joint distribution showed these subsets for the two cells were 

distinct, unlike with pairs of principal components (Figure 2D, top). Only a small number of 

time frames had high fluorescence levels in both cells simultaneously, consistent with the 

cells’ activities being statistically independent. We did encounter some cell pairs with 

correlated activity, which we handled in the third stage of our analysis procedure (see below). 

Interestingly, we found that although independent components are not inherently rank 

ordered, we could use the skewness as an effective diagnostic for distinguishing independent 

components representing individual cells from those representing artifacts, such as due to 

movement artifacts. Components we recognized by eye to be neuronal or glial signals 

generally had higher spatial and temporal skewness than noise or artifactual components 
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(Figure 2E). By sorting the independent components by their temporal skewness we could 

segregate and more easily reject artifactual components. The association of skewness with 

effective isolation of cellular signals was consistent with the increases in skewness that 

occurred at the ICA stage of our procedure. For example, the skewness of pixel value 

distributions was -0.009 ± 0.26 (mean ± s.d.; n=504 components in 5 mice) for principal 

components but 4.4  ± 2.7 (n=300) for independent components. When we inspected the 

independent components with high skewness we found several types of cellular signals in our 

cerebellar recordings. 

Prominent signals extracted by ICA were those from one, sometimes two, and 

occasionally three or more of the striped regions that we interpreted to be cross-sectional 

profiles of the corresponding number of Purkinje cell dendritic trees (Figure 2A and Figure 5). 

Signals from these stripes exhibited brief increases in fluorescence (<50 ms rise), followed by 

a decay to baseline over 124 ± 63 ms (mean ± s.d., n=150 cells in 5 mice). In awake mice 

these Ca2+ transients occurred at a spontaneous rate of 0.76 ± 0.15 Hz (n=199 cells in 5 mice) 

when the mice were not moving on the exercise ball. These rates are consistent with those 

from electrophysiological recordings of complex spiking [89, 290] and Ca2+-imaging studies 

in Purkinje cells [23, 40, 219]. We verified that Ca2+ spikes identified by ICA corresponded to 

complex spikes, through simultaneous optical and extracellular single-unit 

electrophysiological recordings (Figures 5C and 8). ICA also regularly yielded signals with 

slower dynamics consistent with the characteristics of Ca2+ activation in fibers of Bergmann 

glia [287], which are the sole type of astrocyte in the cerebellar molecular layer (Figure 5). 

Independent components with skewness values lower than those for Bergmann glia or 

Purkinje cells generally resembled artifacts and were excluded from all further analyses 

(Figure 2E).  

Combining Spatial and Temporal Information Improves Cell Sorting 

After obtaining these initial results, we sought to fine-tune the ability of ICA to isolate 

individual cells and studied in simulations how accurately the extracted signals reflected 

underlying physiological dynamics. We examined how this depended on whether ICA was 

used to optimize the skewness of the spatial filters, time courses, or some combination of the 

two (Figure 3A). Our initial studies (Figure 2) had followed previous ICA approaches in 

maximizing the sparseness of the spatial filters [280]. However, for cell sorting it is natural to 
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include temporal statistics as well. 

We added temporal statistics into our analysis by using a combination, spatio-

temporal form of ICA [43, 291]. The objective function optimized by spatio-temporal ICA is a 

linear combination of spatial and temporal skewness values averaged over all components 

(Figure 3A). A single parameter, µ, set the relative contribution of spatial and temporal 

information (Figure 3) (Experimental Procedures). We sought µ values that improve the 

accuracy with which cellular signals can be reconstructed from noisy data. To explore, we 

created artificial movies containing known signals and noise statistics (Figures 3B and 3C). 

These movies mimicked our actual recordings from the mouse cerebellar molecular layer. We 

designed the cells’ sizes, shapes, spatial distributions, and temporal dynamics, as well as the 

noise sources and background structures such as blood vessels, to resemble those in the 

experiments. We defined the fidelity of extracted signals, F, as the correlation coefficient 

between each cell’s actual dynamics and its reconstructed signal (Experimental Procedures). 

F=100% implied perfect reconstruction; F=0 implied the algorithm failed to identify any 

signature of the cell’s activity. 

A purely spatial ICA (µ = 0) yielded signals partly resembling the underlying 

dynamics (F = 77 ± 20%, mean ± s.d.; n=1100 artificial cells) (Figures 3D-3G). A purely 

temporal ICA (µ = 1) was unsuccessful and led to low fidelities (F = 36 ± 13%) and spurious 

spatial filters (Figures 3D-3G). However, spatio-temporal ICA improved the fidelities of our 

reconstructions (86 ± 16%) (µ = 0.58; Figures 3D and 3E, middle row). µ values of ~0.5-0.6 

led to the greatest proportion (~88%) of cells reconstructed with high fidelity, which we 

defined as F > 75% for purposes of comparisons to conventional cell sorting (Figures 3F and 

3G). In subsequent studies of real data, we verified that spatio-temporal ICA extracted the 

greatest number of signal traces whose dynamics resembled that expected of Purkinje cells. 

Thus, we next examined how spatio-temporal ICA compared to conventional ROI analysis.  

Comparison of Independent Component and Region of Interest Analyses 

To permit comparisons between ICA and ROI analyses we used a form of ROI 

analysis that represents the best a human analyst could do if she correctly identified a set of 

example movie frames during which each cell is active (Experimental Procedures). The most 

challenging situations for cell sorting that arose in our simulations and experiments involved 
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cells with spatially overlapping pixel sets (Figures 4A and 5A). In such cases ROI analysis 

failed to remove cross talk between overlapping cells (Figure 4B). However, spatio-temporal 

ICA avoided cross talk, because the independent components had negatively weighted 

surround regions in the spatial filters that subtracted signals from overlapping cells (Figure 

4C). Cross talk removal was particularly helpful for separating spatially overlapping neuronal 

and glial signals. 

We studied how noise levels and the field of view area affected ICA and ROI analyses 

(Figure 4D). Our simulations included photon shot noise, which dominates instrumentation 

noise in a properly de-noised two-photon microscope. For each pixel the photon counts 

obeyed an approximation of Poisson counting statistics, with the standard deviation set by a 

signal to noise ratio (SNR) parameter (Supplemental Experimental Procedures). In simulations 

with 0.09 mm2 field of view and ~100 cells, ICA used increases in SNR to improve 

reconstruction fidelities and reduce cross talk between neighboring cells (Figure 4E). With this 

cell density the performance of ICA approached an optimum with SNR > 20 (~400 photons 

per pixel per time frame). In this regime the median fidelity approached 95% and >80% of 

extracted signals had F > 75%. By comparison, ROI analysis did not improve much with 

increases in SNR and even at high SNR failed to separate overlapping cells (Figure 4E). 

Given a fixed number of pixels the difficulty of cell sorting increases with larger 

fields of view, because the number of overlapping cells increases as each pixel covers a larger 

area. Across a broad range of field sizes, ICA achieved high signal fidelity and low cross talk, 

whereas ROI analysis steadily degraded as increased overlap between cells led to higher levels 

of cross talk (Figure 4F). Overall, ICA yielded higher fidelity traces than ROI analysis and 

over much larger fields of view (Figure 4D). This observation is useful for experimental 

design, since it potentially cuts the number of photons per pixel that must be collected for high 

quality reconstructions (Discussion). 

Image Segmentation for Separating Correlated Signals 

A key advantage of imaging is its ability to sample dense networks of neurons and 

astroctyes. In such studies the dynamical correlations between neighboring cells are often of 

chief interest. Thus, a key question is whether ICA, which relies on statistical independence to 

identify cells, might be limited in its ability to separate cells with highly correlated signals? 

In studies of artificial data with varying degrees of synchrony among Purkinje cell 
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pairs, we found ICA could readily distinguish cells whose spike trains had correlation 

coefficients, r, as high as 0.8. Because the spike rates used in our simulations (≤ 1 Hz) were 

well below the imaging frame rate (10 Hz), this level of correlation corresponds to ~80% of 

each cell’s spikes occurring synchronously with those of another cell. Although the correlated 

cells were far from independent, sorting performed well and achieved high fidelity signal 

estimates comparable to the performance of cell sorting in the absence of correlation (r=0). 

This was because the activity traces of the individual cells were still more skew than traces 

from cell mixtures. This result is consistent with prior reports that ICA is often robust to 

deviations from the underlying model assumptions [292]. Nonetheless, when r > 0.8, ICA 

often extracted signals from strongly correlated cells within a single independent component. 

This was because if two cells had highly correlated activity, then a time trace that averaged 

pixels from both cells was generally sparser, with a more skewed distribution, than the 

individual cells’ signals. 

Our sorting procedure therefore augments ICA with an image segmentation step to 

disentangle signals from highly correlated cells that are spatially separated (Figure 1B). 

Following ICA, we smoothed each component’s spatial filter and applied a binary threshold to 

find local regions with strong signal contributions (Figure A,B). If a spatial filter contained 

more than one such group, we created new filters, each of which contained only one of the 

image segments (Figure 9C). This successfully separated distinct cells with strongly correlated 

activity (Figure 9D). However, if one of the image segments included only a small number of 

pixels, segmentation reduced the signal amplitude relative to background fluctuations since 

the noise was averaged over a smaller set of pixels. To avoid excessively noisy signals, we 

excluded any image segments covering an area smaller than 50 pixels, which was much 

smaller than the number of pixels occupied by a full Purkinje cell dendritic tree (478 ± 165 

pixels; mean ± s.d.; n=312 dendritic trees). After these extensive tests on simulated data, we 

applied our procedures to the study of large-scale two-photon Ca2+-imaging data acquired in 

the cerebellar cortex of live mice. 

Sorting Cerebellar Ca2+ Signals From Live Mice 

To illustrate 4-stage cell sorting in an experimental context, we analyzed data taken in 

the cerebellar molecular layer of both anesthetized and awake, head-fixed mice (Experimental 

Procedures). Using spatio-temporal ICA with µ = 0.1-0.2 (Supplemental Experimental 
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Procedures) followed by image segmentation, we extracted filters with morphologies of 

Purkinje cell dendrites that showed spiking dynamics (Figures 5A and 5B). There were also 

filters with more isotropic profiles and slower dynamics representing Ca2+ activation of 

Bergmann glial fibers (Figures 5A and 5B) [287]. Bergmann glial fibers are known to be 

intertwined with Purkinje cell dendrites [4, 293], so there were many pixels containing the 

activity of both cell types. Thus, it is very challenging if not impossible to separate Purkinje 

cell and Bergmann glial signals by ROI analysis. Yet, by automated cell sorting we 

disentangled Purkinje cell Ca2+ spikes (Figure 5B, top four traces) from stereotyped 

Bergmann glial Ca2+-transients (Figure 5B, bottom four traces). 

Spontaneous glial signals identified by cell sorting had mean event rates that were 

much less frequent than neuronal Ca2+ spike rates in both awake and anesthetized mice. The 

time course of glial Ca2+ activation conformed closely (r = 0.9 ± 0.1, s.d.; n = 96 events) to a 

double exponential function with similar time constants for the rise (1.5 ± 0.7 s) and decay 

(1.8 ± 1.2 s). These kinetics resembled those observed previously in Bergmann glia in 

cerebellar slices and in awake mice [287, 294, 295]. Despite the spatial overlap of neuronal 

and glial signals and their distinct dynamical timescales, ICA separated the different signals 

for the two cell types while minimizing cross talk. 

After isolating activity traces from individual Purkinje cells, we estimated the cells’ 

Ca2+ spike trains in digital format. This involved temporal deconvolution to remove the slow 

decay of Ca2+-dependent fluorescence following each spike and then labeling each instance of 

a positive-going threshold crossing as a spike [224] (Figure 5B). The deconvolution accounts 

for the kinetics of Ca2+ unbinding from the fluorescent indicator [279].  

To quantify accuracies of spike detection in live subjects, we combined two-photon 

microscopy with simultaneous extracellular single unit electrical recordings of Purkinje cell 

activity in anesthetized mice (Figure 5C) (Experimental Procedures). On the working 

assumption the electrophysiological traces provided perfect records of complex spiking, we 

tested our analytical ability to extract complex spikes from the optical data. (This assumption 

is in general false, and imperfect electrical traces would lead to underestimation of the 

accuracy of optical spike detection). A natural analysis for this test is receiver operating 

characteristic (ROC) analysis, which compares the probabilities of correct and incorrect spike 

identification (Figure 8A) [296]. 

These probabilities each depend on the choice of threshold used for spike detection, 
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and the ROC curve summarizes the tradeoff between sensitivity and accuracy in a two-

dimensional plot (Figure 8B). The area under the ROC curve, a number between 0.5 and 1, 

equals the probability that an ideal classification algorithm would correctly discriminate a 

randomly selected time frame with a spike from one without a spike [296]. This measure is not 

dependent on the spike threshold. In our data, areas under the ROC curves were 0.84 ± 0.06 

(mean ± s.d.; n = 7 cells) for image segments and 0.92 ± 0.05 for raw ICA signals. This 

demonstrates an ability to achieve ~85-90% discrimination accuracy. We also examined 

absolute false positive and false negative spike detection rates as a function of the spike 

detection threshold (Figure 8C). Both error rates in our data sets were comparable with those 

in recent imaging studies [40, 297] and with tetrode recordings [222] and were superior to the 

reported error rates of 23-30% for manual spike sorting by trained experts in simulated micro-

electrode array recordings [298]. 

Following these validation studies in anesthetized mice, we further examined data 

from awake mice and extracted up to ~100 Purkinje cell dendritic segments from fields up to 

~500 µm across (Figures 5D and 5E). Our automated algorithm efficiently extracted the spike 

trains from cells tiling the entire field of view, many of which were closely adjacent and 

extremely difficult to separate by manual methods. 

Locomotor Behavior Increases Complex Spike Rates of Purkinje Cells 

A longstanding goal of cerebellar physiology has been to determine how ongoing 

activity in the olivo-cerebellar circuit is modulated during motor behavior. We reasoned that 

automated cell sorting, when combined with two-photon microscopy in behaving mice, would 

permit detailed examination of the relationships between Purkinje cell complex spiking and 

locomotion. 

Using automated cell sorting we extracted Ca2+ signals from Purkinje cells in 

cerebellar lobules V and VI in head-restrained mice allowed to run voluntarily on an exercise 

ball. Mean rates of complex spiking varied between periods of anesthesia, alert rest, and active 

locomotion for each mouse (Figure 6). For individual cells studied under all three conditions, 

spike rates rose from 0.48 ± 0.27 Hz (mean ±  s.d., n = 199 cells in 5 mice) under isoflurane 

anesthesia, to 0.76 ± 0.15 in alert but resting mice, to 1.0 ± 0.18 Hz in awake mice during 

active locomotion (Figures 6C and 6D) (p<0.001 for all pairwise comparisons; Wilcoxon 

signed rank test). Thus, gross activity levels of complex spiking depended on behavioral state, 



 

 140 

consistent with recent optical studies [23]. Prior electrophysiological studies of locomotion in 

decerebrated cats have been ambiguous on this point [25].  

In isoflurane-anesthetized mice, we occasionally saw adjoining groups of Purkinje cell 

dendritic trees with little or no complex spiking (rate < 0.01 Hz). For example, in Figure 6B 

dendritic trees numbered 1-8 and 35-42 by medio-lateral position were largely silent under 

anesthesia. This was not so for all cells, as shown by dendrites 9-34 that spiked at 0.38 ± 0.15 

Hz (n=25 dendrites). After termination of anesthesia, all Purkinje cells (1-42) in the field of 

view resumed regular Ca2+ spiking (Figure 6B). This example highlights the combined utility 

of automated sorting and Ca2+-imaging in behaving animals by revealing phenomena in dense 

cellular networks inaccessible to electrical recordings. 

Cerebellar Microzones Remain Anatomically Stable Across Behavioral States 

Our studies of the cerebellar vermis in behaving mice allowed us to reexamine the 

organization of parasagittal bands of correlated Purkinje cells noted previously by imaging in 

anesthetized animals [40, 281] and electrophysiological means [44, 89]. Using Ca2+-imaging 

in awake behaving mice we examined whether microzones have stable anatomical boundaries 

[44] or represent flexible dynamic ensembles that vary across behavioral states [46]. 

By studying pairwise correlation coefficients for Ca2+-related fluorescence signals, or 

for the corresponding spike trains, we repeatedly observed enhanced correlations for multiple, 

closely situated pairs of Purkinje cell dendrites as compared to more distally separated pairs 

(Figures 7A and 7B). We looked for the anatomical boundaries of such microzones of highly 

correlated cells by clustering Ca2+-spike trains using the pairwise correlation coefficients 

(Figure 7C and 7D) [40] (Experimental Procedures). In alert but resting mice, cluster analysis 

partitioned cells into microzones with higher correlations for intra-zone pairs (r = 0.10 ± 0.08 

mean ± s.d.; n=1418 pairs in 5 mice) than inter-zone pairs (0.02 ± 0.03, n = 2474; p<0.001 

Wilcoxon rank sum test). Strikingly, the boundaries between microzones were sharply 

delineated, with the spatial transition between microzones generally occurring within one cell 

width rather than in a gradual manner over multiple Purkinje cell dendritic trees.  

Like the rate of complex spikes, the strength of pairwise correlations between 

complex spike trains varied between anesthetized, alert but resting, and actively moving 

behavioral states. The correlations we observed among cells within each microzone grew 

stronger during active movement (p<0.001 Wilcoxon signed rank test) both for intra-zone cell 
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pairs (0.20 ± 0.09), and to a statistically significant but far lesser extent for inter-zone pairs 

(0.03 ± 0.05), as compared to alert rest.  When considered together with the rises in spike rates 

across the field of view, this distinction in synchrony between intra- and inter-zone cell pairs 

shows that there are different degrees of correlated input to intra-zone versus inter-zone pairs 

and that the rise in synchrony is likely not simply a consequence of increased spike rate in 

independent cells. Likewise, it would be hard to argue that the increase in measured spike 

rates during locomotion was an artifact due to noise, since noise would not lead to precisely 

defined microzones of high pairwise synchrony. 

Compared to either rest or locomotion, isoflurane anesthesia reduced correlations 

dramatically (0.03 ± 0.06 intra-zone; 0.001 ± 0.02 inter-zone). In each microzone we found 

that nearly all dendrite pairs were significantly correlated (p<0.01, likelihood ratio test) in 

resting (86% of pairs) and actively moving mice (95%), but only 26% of intrazone pairs were 

significantly correlated under anesthesia. By comparison, less than a third of dendrite pairs 

from different microzones were significantly correlated in mice at rest (29%), during 

movement (33%) and under isoflurane anesthesia (7%). Taken together, these results show 

that both complex spike rates and pairwise synchrony within microzones increased during 

active movement as compared to alert rest or isoflurane anesthesia. 

The organization of correlated Purkinje cell complex spiking was earlier proposed to 

be dynamically modulated during motor behavior [46]. We tested the temporal stability of 

microzones in two ways. First, we divided each experiment into 60 s epochs and performed 

cluster analysis separately for each epoch. We found that each Purkinje cell was assigned to 

the same microzone during 96 ± 6% of epochs (n = 44 epochs). Second, we tested if 

microzones changed their organization across different behavioral states. By comparing 

microzones found during locomotion on an exercise ball and alert rest, we found that 98.5% ± 

0.8% (mean ± 68% confidence interval; n = 199 cells) of the cells fell in the same microzone 

in the two conditions (Figure 7D). Our results using automated cell sorting on cerebellar 

imaging data from mice behaving on an exercise ball thus fail to support a dynamic 

modulation of microzone boundaries, and instead provide evidence for a stable anatomical 

organization of temporal correlations in the olivocerebellar pathway. 

DISCUSSION 

The approach reported here for automatically extracting cellular Ca2+ signals meets an 
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important growing need for neuroscience research. We discuss below the strengths and 

limitations of our approach as well as the implications of our physiological findings obtained 

by automated sorting. 

A Growing Need for Automated Cell Sorting 

Emerging techniques for Ca2+-imaging across large populations of individual cells 

[225] have created new opportunities for densely sampling the dynamics of cellular networks 

[18, 28, 40, 224, 226, 270, 272, 273, 299, 300]. However, the raw data from large-scale Ca2+-

imaging also poses new analytic challenges that largely fall into three categories: 

identification of cells’ locations, extraction of Ca2+ signals, and detection of neuronal spikes. 

Only the third problem has received considerable attention and several algorithms for 

detecting spikes within fluorescence traces are now available using temporal deconvolution 

[224], template matching [48, 267], or supervised machine learning [297]. All of these 

algorithms, however, rely on the assumption that the high-dimensional, raw movie data has 

already been transformed into paired sets of spatial filters and time traces for each cell. This 

transformation necessitates solving the first two challenges. 

A reason for the focus to date on spike detection may be that the problem resembles 

familiar challenges from spike sorting of electrophysiological data [38]. Although Ca2+ 

transients evolve more slowly and suffer from different noise sources than voltage signals, in 

both cases spike detection transforms a relatively low-dimensional set of traces into digital 

spike trains. By comparison, the problems of cellular localization and signal extraction have 

few precedents in electrophysiology, since the high-dimensionality of Ca2+-imaging data 

implies thousands of parameters must be confronted for every cell. Further, the spatial 

intertwining of cellular processes in many tissues inherently leads to cross talk among nearby 

cells falling within the same pixels. 

To date, localizing individual cells within Ca2+-imaging data has commonly been done 

by manual identification of cell bodies based on their morphologies in static fluorescence 

images [28, 48, 272]. Some studies have used semi-automated methods that rely on 

morphological filters to find cellular boundaries [301]. After finding structures with the sizes 

and shapes expected of cell bodies, these procedures define ROIs for each cell and average the 

fluorescence across each ROI to extract the cellular dynamics. However, with the most 

commonly used AM-ester conjugated Ca2+ indicators this approach generally fails to identify 
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neuronal dendrites or fine glial processes, since these do not stand out with high contrast and 

so cannot be readily delineated by morphological filtering. Because dendrites and glial 

processes often blend into the background, except during periods of Ca2+ transients, an 

approach that relies on signal dynamics is warranted. 

A recent study solved the cellular localization and signal extraction problems for Ca2+ 

signals from Purkinje cell dendrites by using temporal cross-correlation analysis to find 

groups of pixels contributing to each cell’s signal [40]. A trained user first selects a region 

slightly larger than each dendrite and then computes the cross-correlation among the 

fluorescence signals of all pixels within this region. The final ROI contains all pixels that were 

highly correlated with a large number of other pixels in the user-defined region. Although this 

procedure used signal statistics to localize neuronal dendrites, it required 2-3 hours of manual 

pixel selection by trained users for each data set. As the number of cells in Ca2+-imaging 

recordings extends into the hundreds [269, 272] and beyond, this need for human selection of 

pixels will become increasingly prohibitive. Our automated procedure takes only a few 

minutes of user supervision to set the number of principal components and to screen the 

extracted independent components.  

The use of an ICA stage within our 4-stage sorting procedure (Figure 1B) for finding 

cellular Ca2+-signals within raw data containing ~105 simultaneous time traces builds upon 

prior applications of ICA in the analysis of physiological data of other types and of far fewer 

dimensions. ICA extracted unitary voltage signals from studies using a photodiode array to 

study the sea slug [42]. Since there were only 448 diodes in the array, the dimensionality of 

the voltage data was far smaller than that of the Ca2+-imaging data explored here and did not 

require dimensional reduction. Two studies have used PCA followed by ICA to extract 

hemodynamic signatures and functional domains from optical imaging data [280, 302], 

although the signals originated from large aggregates of cells and so often involved retention 

of just a few (e.g. ~6) principal components [280].  

Our approach builds upon and differs from this previous work by modifying prior ICA 

methodologies to incorporate both spatial and temporal statistics and by following ICA with 

another analytic stage for image segmentation. Due to these additions we achieved the first 

automated extraction of Ca2+ signals from individual cells, despite the high dimensionality of 

our raw data. Thus, our approach is uniquely suited for the analysis of data sets even larger 

than those examined here and could be deployed to extract signals from 3D-imaging data 
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containing hundreds or even thousands of cells [272]. Our procedure is grounded in three 

suppositions: (1) cellular signals are mathematically separable into spatial and temporal 

components; (2) signals from different cells are statistically independent; (3) cellular spatial 

filters and temporal signals possess highly skewed distributions. Interestingly, our procedure 

proved to be effective under conditions in which there are modest deviations from these 

conditions. Below we discuss the strengths and limitations that arise. 

Cell Sorting Separates Movie Data Into Spatial and Temporal Components 

The first supposition of our approach is that cellular signals are separable into 

corresponding pairs of spatial filters and time courses (Figure 1A). This is based on the 

observation that cellular Ca2+ signals within large-scale imaging data generally arise from 

fixed locations and do not convey details at the shortest physiological time scales regarding 

rapid intracellular propagation of [Ca2+] changes. For example, for Purkinje cell complex 

spikes, any delay between Ca2+ activation in different parts of the cell is generally briefer than 

the acquisition time for one image (50-100 ms), thereby permitting a separation of space and 

time in the description of these events. On the other hand, astrocytic Ca2+ waves that 

propagate far more slowly than neuronal Ca2+ spikes violate the assumption of separability 

[303]. Nonetheless, we found that automated cell sorting still extracts a useful approximation 

of cellular signals even in the case of radially expanding Ca2+ waves in Bergmann glia that 

propagate over a fraction of the field of view (Figures 5A and 5B). This suggests ICA cell 

sorting remains a useful tool for analyzing weakly non-separable signals. However, with 

waves that propagate over long distances other analytic tools seem more appropriate.  

Spatio-temporal separability may also be violated in vivo due to movement artifacts. 

Although lateral displacements can be readily corrected by image registration algorithms [28, 

304], residual axial displacements can corrupt physiological signals. Although such artifacts 

violate the assumptions of our cell sorting procedures, we found that ICA can identify 

components that arise due to movement artifacts and thus separate them from the 

physiological signals. This confirms prior work showing that ICA can remove movement 

artifacts [280, 305]. 

Automated Cell Sorting is Robust to Dynamical Correlations in Cells’ Activities 

ICA assumes that cells’ signals are statistically independent. Since no approach to cell 
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sorting can separate completely synchronized sources without taking into account geometric 

information, we added an image segmentation stage following ICA. The result is a robust, 

hybrid procedure that can be applied even in cases of weak or strong cellular correlations. This 

hybrid handled strong levels of correlation (r ~ 0.9)  in our simulations and with cerebellar 

data successfully separated highly correlated dendrites that clearly belonged to different 

Purkinje cells based on their anatomical separation (Figure 9). High levels of complex spike 

synchrony are known to arise for distinct Purkinje cells with inputs from the same climbing 

fiber [306].  

Interestingly, for cell pairs with only weak correlations (r < 0.8), image segmentation 

was unnecessary. Although correlated activity violates the assumption of independence, weak 

correlations between cell pairs did not prevent the ICA stage from identifying the two cells as 

separate entities. For example, Purkinje cells that receive different climbing fibers still often 

exhibit weakly correlated complex spiking [89]. This weak synchrony, with r ~ 0.1 [23, 40], is 

thought to arise due to gap-junction connections in the olivary neurons that project the 

climbing fiber axons [307]. The ICA stage of our analysis was not misled by this weak 

synchrony and correctly identified individual cells. Overall, the ability of our 4-stage 

procedure to find individual cells, even in cases of weak or strong synchrony, is an important 

aspect of the procedure’s general utility that should enable applications to studies of many 

brain areas. 

Cell Sorting Based on Statistical Skewness 

A main ingredient in our approach is the assumption that the user seeks signals with 

skewed distributions, as mathematically embodied in the ICA objective function. Skewness is 

a measure of the asymmetry of a signal’s distribution that can be large for sparsely active cells 

but that can also successfully characterize signals occurring more densely in time. An 

assumption of skewness also leads to some limitations.  

Spatial skewness is highly valid for data in which the individual active cells occupy 

only a small fraction of the pixels across the field of view. Temporal skewness poses 

interesting tradeoffs. In our own recordings of Purkinje cell activity, the assumption of skew 

temporal statistics was satisfied since the mean time between Ca2+ spikes was greater than the 

duration of the individual spikes. However, such sparse activation in time is not the only 

means of achieving a highly skewed distribution of signal amplitudes. For example, cells with 
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high rates of activity that are strongly modulated in time, such as during bursts, could also 

exhibit skewed distributions of fluorescence signal amplitudes. Thus, our approach should be 

well suited to neurons that exhibit irregular spiking, such as high-frequency spike bursts 

interrupted by periods of quiescence [28, 48, 267-270, 300, 301, 308]. However, since both 

PCA and ICA may ignore cells with extremely low activity levels, our 4-stage algorithm fails 

to identify cells that remain inactive throughout the duration of a movie. This could lead to 

underestimation of cells’ densities and overestimation of mean activity levels in areas where 

many cells are largely silent [267]. At another extreme, high rates of tonic, regular Ca2+ 

activation without bursts will also lead to temporal distributions of signals that are not skew, 

potentially leading ICA to ignore such cells.  

For example, in our own recordings we had difficulty extracting the cerebellar 

interneurons present in our data by spatio-temporal ICA [226], since these cells have high 

spontaneous spike rates compared to the image acquisition rate and do not show bursty Ca2+ 

dynamics. A purely spatial ICA combined with image segmentation might be better suited to 

extract these cells. Alternatively, to find cells with activity patterns that are not temporally 

skew, a morphological approach might be better [301]. 

Automated Cell Sorting Can Improve the Design of Optical Experiments 

Experimenters often choose optical parameters, such as illumination power and field 

of view size, based on intuitive notions of how images should appear to best facilitate data 

analyses. Our simulations of automated cell sorting indicate that these notions may often be 

incorrect, and that there may sometimes be more leeway than has been appreciated to reduce 

the numbers of photons and pixels per cell. This stems from the observation that there are 

broad regimes over which increases in signal to noise and decreases in field of view do not 

markedly improve the fidelities of automatically extracted Ca2+ signals (Figures 4E and 4F). In 

our artificial movies the fidelity of extracted signals was not improved substantially by 

increasing photon counts above a threshold level. This threshold was ~400 photons per pixel 

per time frame at a moderate field of view size (0.09 mm2) containing ~100 cells, and 

increased to 104 photons for a 0.25 mm2 field of view with the same number of pixels. 

Increasing photon counts above the threshold for high fidelity extraction may improve the 

subjective appearance of raw movie data, but it may not aid the ability to test hypotheses or 

make conclusions about brain dynamics. Similarly, our results should encourage recordings 
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over larger fields of view than might otherwise have been used based on cells’ subjective 

appearances.  

This extension of experimental capabilities arises from the superiority of our ICA 

based cell sorting procedure over conventional ROI analyses. The latter typically require 

sufficient morphological information to recognize cellular outlines. Sorting by ROI analysis 

generally will not work well if each cell occupies only a few pixels or blends into surrounding 

areas. These conditions need not restrict ICA, which recognizes cells based on their activity 

signatures, not their appearances, and can readily avoid cross talk even for cells that share 

overlapping pixel sets. ICA’s analytical advantages thus aid experimental capabilities. Overall, 

our studies highlight the value of benchmarking analysis procedures against simulated data as 

part of the experimental design process. Simulations allow experimenters to plan studies that 

optimally use scarce photons and pixels to test specific hypotheses about cellular dynamics. 

Cerebellar Microzones As Stable Anatomical Entities 

Automated cell sorting allowed us to re-examine a longstanding debate on the spatial 

organization of Purkinje cells’ complex spiking activity. One view holds there are flexible 

assemblies in the cerebellar cortex that alter their composition of Purkinje cells with 

synchronous complex spikes according to changing behavioral requirements [309]. In support 

of this view, microelectrode array recordings of complex spiking in awake rats during 

repetitive licking suggested that different groups of spatially separated cells were 

synchronously activated at distinct times corresponding to different phases of movement [46]. 

An opposing view holds cerebellar microzones are defined by the anatomical organization of 

climbing fiber projections and provide a stable architecture for controlling different parts of 

the body [47]. In support of this latter view, physiological mapping studies revealed that strips 

of neighboring Purkinje cells receive climbing fiber inputs with similar receptive fields for 

cutaneous stimulation [44, 45, 47]. These maps are intricate but reproducible across subjects 

[310]. Microzones have been recently observed with single cell resolution using Ca2+-imaging 

of Purkinje cell dendrites in anesthetized mice [40].  

By extracting complex spike trains from populations of >40 individual Purkinje cells 

during locomotion on an exercise ball and during alert rest we examined the stability of 

microzones’ cellular composition. Our data revealed that both microzone boundaries and 

cellular compositions were stable across these physiological states and maintained sharp 
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boundaries with single cell precision. Although the borders between microzones remained 

fixed, both the rates of complex spiking and pairwise correlation coefficients rose during 

locomotion as compared to alert rest. The substantial discrepancy in synchrony between pairs 

of dendrites within and across microzones, as well as the sharp microzone boundaries 

identified by cluster analysis, argue strongly against an interpretation of our results as being 

due to noise, which would not lead to precisely defined regions of high pairwise synchrony. 

Our results are also consistent with recent data from a study that used high-speed miniaturized 

microscopy to image Purkinje cell Ca2+ spikes in freely moving mice and reported an increase 

in complex spike rates and pairwise synchrony at the level of population statistics [23]. By 

combining automated cell sorting and two-photon microscopy we provided here a more 

detailed view of Purkinje cell correlations during rest and locomotion.  

Our results support an anatomical view of the organization of the olivocerebellar 

circuit, and we found no evidence of a dynamical reorganization during motor behavior. Still, 

it should be kept in mind that we only explored a single motor behavior and others will need 

to be examined. Although we cannot eliminate the possibility that microzones dynamically 

reconfigure under other circumstances, our data do considerably bolster the view microzones 

are stable anatomical entities [47]. Nonetheless, the evidence for dynamical reconfiguration of 

Purkinje cell assemblies [46, 311] should not be discounted; an attractive possibility 

reconciling the two viewpoints is that correlated assemblies of different microzones, each 

stably defined, dynamically reconfigure in a behaviorally dependent manner. It will also be 

important to examine correlations between more than two cells to see if there are larger 

cellular assemblies that form [46, 312] 

Our data showed that pairwise correlations and spike rates were considerably higher 

in awake animals than anesthetized subjects, highlighting the importance of imaging in alert 

subjects. These results from cerebellar cortex contrast with recent work on neocortical circuits. 

In the rat visual cortex, spike correlations between layer 2/3 neurons decreased during periods 

of activity, as assessed by whisker or forepaw movements, as compared to rest [48]. This 

contrasts with our data, which revealed that during animal activity complex spike correlations 

increased. The contrast highlights potential differences in neural coding between the neocortex 

and the inferior olive, which drives Purkinje cell complex spiking via the climbing fiber 

pathway. Further, ketamine/xylazine anesthesia reduced spike rates but increased correlations 

among neocortical pyramidal cells [48], which is also the opposite of our observations on 
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Purkinje cell complex spike correlations under isoflurane anesthesia. However, a prior study 

in ketatmine/xylazine anesthetized rats also found significant correlations in Purkinje cell 

complex spiking [40]. These observations suggest different anesthetics might have differential 

effects on neuronal synchrony and highlight the importance of studying concerted activity 

patterns in awake animals across a range of behavioral conditions.  

Technological Outlook 

We expect continued refinement of automated sorting techniques will further increase 

the utility of optical imaging for studying dense cellular networks and will allow cell sorting 

to assume a comparably important role as in electrophysiology. By introducing an automated 

means for cell sorting based on broadly applicable statistical principles, we have created a 

framework for moving beyond current heuristic and semi-automated approaches. Further 

refinements of our protocol might incorporate statistical measures of sparseness other than 

skewness or a priori knowledge of various types beyond the one-parameter tradeoff between 

spatial and temporal skewness explored here. Another possible generalization might include 

information about sensory stimuli or animal behavior to derive functional characterizations of 

cellular activity in an automated way.  

EXPERIMENTAL PROCEDURES 

Automated Cell Sorting Procedures 

We analyzed simulated and experimental Ca2+ fluorescence imaging data using 

ImageJ plug-ins and custom MATLAB routines. Movies were first corrected for lateral 

movement artifacts using TurboReg [313]. We then applied our automated cell sorting 

protocol (Figure 1A) comprising: (1) principal component analysis (PCA) for dimensional 

reduction; (2) spatio-temporal independent component analysis (ICA) for separation of 

intracellular cellular Ca2+ signals from sources of noise or artifacts; (3) image segmentation to 

separate activity traces from highly correlated cells; and, in the case of neuronal signals, (4) 

temporal deconvolution and spike detection to extract the times of action potentials. For 

details of each stage, see supplemental material. 
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Artificial Data Sets 

We simulated Ca2+-imaging data by combining artificial spike trains and glial 

transients with spatial filters designed to reflect the size, shape, and density of Bergmann glia 

and Purkinje cell dendritic trees as viewed in optical sections within the mouse cerebellar 

molecular layer. Each simulated movie had 1,000 time frames at 10 frames per second. We 

added a static image to the temporally modulated Ca2+ signals to represent background 

fluorescence arising from brightly labeled interneuron somata, as well as elongated dark 

regions representing blood vessels. These time-dependent and static background signals 

together defined a noiseless data set. We created noisy movie data with a defined signal to 

noise ratio, S , by multiplying the noiseless movie data in each pixel and each time frame by 

an independent random number chosen from a distribution with mean S2  and variance S2 . 

This noise model approximates the expected photon distribution given an average of ~ S2  

collected photons per pixel per time frame using a shot-noise limited microscope under 

conditions of relatively uniform image contrast. 

Animal Procedures 

All animal procedures were approved by the Stanford Administrative Panel on 

Laboratory Animal Care. We used 12 male C57Bl/6 wild type mice (5.5-15 weeks old). Each 

experiment involved two surgeries. Several days before recordings a custom metal head plate 

was attached to the skull with dental acrylic. This allowed habituation of mice to accept head 

restraint while walking on the exercise ball and stable imaging/electrophysiological recordings 

in anesthetized and awake mice. On the recording day, a craniotomy was opened over the 

cerebellar vermis. Two-photon imaging in head-restrained mice was performed similarly as in 

[28] except that we used slightly different surgical procedures and the mice walked and ran on 

an exercise ball (Habitrail, model 62065) that rotated on one axis instead of two 

(Supplemental Experimental Procedures). We tracked mouse locomotion by using an optical 

encoder to monitor the exercise ball’s rotations.  

Two-photon Fluorescence Imaging 

We loaded multiple neurons and glia with the fluorescent Ca2+-indicator Oregon 

Green 488 BAPTA-1-AM (OGB-1-AM; Molecular Probes) as described [32, 225, 226]. We 

used a custom two-photon microscope equipped with an ultra-short pulsed Ti:sapphire laser 
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tuned to 800 nm. See Supplemental Experimental Procedures for details.  

Analysis of Cerebellar Microzones 

Following extraction of complex spike trains from populations of Purkinje cells, we 

analyzed spiking correlations among all cells during anesthetized, awake but resting, and 

actively moving conditions. We used the Pearson correlation coefficient to compare binary 

spike trains for each pair of cells. We grouped together cells with similar spike trains using k-

means clustering [314]. 

FIGURES 

 

Figure 1. Automated Cell Sorting Involves a Defined Sequence of Analytical Stages. 

The goal of automated cell sorting is to extract cellular signals from fluorescence imaging data 
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sets (left) by estimating spatial filters (middle) and signal time courses (right) for each cell. 

The example depicts typical fluorescence transients in cellular structures of the cerebellar 

cortex as observed in optical cross-section. Transients in Purkinje cell dendrites appear as 

extended stripes while transients in Bergmann glial fibers tend to be more localized, appearing 

ellipsoidal in cross-section.  

Automated cell sorting incorporates four stages of processing to meet specific analysis 

challenges. 
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Figure 2. Intracellular Ca2+ Signals Are Sparse, Independent Components. 

(A) Example spatial filters of individual principal (top) and neuronal independent (bottom) 

components identified within two-photon Ca2+-imaging data from the cerebellar cortex of a 

live mouse. The independent component more accurately captures the form of the Purkinje 

cell dendritic tree (orange region). 

(B) Signal time courses for example principal (blue) and independent (red) components shown 

in A. The latter time course provides a superior representation of the Purkinje cell’s Ca2+ 

spiking activity. 

(C) Distributions of intensities of pixels in spatial filters for the principal (blue) and 

independent (red) components shown in A (left). Distributions of the two components’ time 

courses, taken across all movie frames (right). Gaussian distributions (black) are shown for 

comparison. 

(D) Joint distribution of the time course values for two example principal (blue) and 

independent (red) components. Extended tails in the distribution of the independent 

components reflect time frames during which calcium dependent fluorescence increases 

transiently. 

(E) Temporal vs. spatial skewness for 50 principal (closed blue squares) and 50 independent 

(open symbols) components. Cellular signals (open red triangles) have more skewed 

distributions than other independent components (open black circles), such as motion artifacts, 

or principal components. 
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Figure 3. Combining Spatial and Temporal Information Improves Cell Sorting. 

(A) Schematic illustration of the objective function (grayscale) maximized by spatial (left), 

temporal (right) and spatio-temporal (middle) ICA as a function of spatial and temporal signal 

skewness (compare with Figure 2E). Arrows indicate the combination of spatial and temporal 

skewness corresponding to the steepest gradient of the objective function.  

(B,C) An example spatial filter (B) and signal time course (C) from an artificial data set that 

mimics Ca2+-imaging data containing the activity of large numbers of Purkinje cell dendritic 

trees. 
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(D,E) Estimates of artificial signals extracted by spatial (top row, red trace), temporal (bottom, 

blue) or spatio-temporal ICA (middle, green). The spatio-temporal ICA yields a trace of 

higher fidelity to the underlying cellular signal than either spatial or temporal ICA. 

(F) Percentile curves showing the median fidelity (solid line) of the signals recovered by ICA, 

as a function of the relative weight of temporal information (µ). Dashed and dotted lines 

indicate the range of fidelity values for signals within one standard deviation of the median. 

(G) Cumulative distribution of the fidelity of recovered signals for the three different values of 

µ indicated by color in (F). Spatio-temporal ICA (green curve) yields the largest percentage of 

signal traces with high fidelity. 

 

Figure 4. Automated Cell Sorting Outperforms Region of Interest (ROI) Analysis 

(A) Three spatially overlapping sources of cellular signals within an artificial data set 
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mimicking large-scale Ca2+-imaging data from the cerebellar cortex. Background grayscale 

image shows simulated field of view containing dark blood vessels and brightly labeled 

interneuron somata. The signals from two Purkinje cell dendritic trees (blue, green) and a set 

of Bergmann glial fibers (red) show independent time courses and distinct temporal dynamics. 

Ca2+ spikes in the Purkinje cell dendrites (gray tick marks) cause the fast fluorescence 

transients. 

(B) Spatial filters (left) and signals (right colored traces) identified by ROI analysis. The 

spike-triggered average fluorescence change for each cell is smoothed and thresholded to 

define the corresponding spatial filter. True spike times (gray ticks) match some, but not all, of 

the spikes estimated from the ROI signals (blue and green ticks). 

(C) Spatial filters, signals and spike times estimated by spatio-temporal ICA with (µ=0.5). The 

higher fidelity signal estimate allows correct identification of all dendritic Ca2+ spikes. 

(D) Diagram on logarithmic axes of how median signal fidelity depends on the signal/noise 

ratio and the field of view size. Colored regions show parameter ranges in which the true 

signals are estimated with >75% median fidelity by ROI and ICA (blue); by ICA but not ROI 

(red); or by neither method (gray). Black circles mark the parameter values used in (E); black 

triangles mark the parameter values used in (F). 

(E,F) Median fidelity (solid symbols) and crosstalk (open symbols) of signals extracted by 

ICA (red) and ROI analysis (blue), as a function of the signal/noise ratio (E) and the field of 

view (F). The field of view is fixed at 0.09 mm2 for (E); the signal/noise ratio is fixed at 18.0 

for (F). 
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Figure 5. Automated Cell Sorting Identifies Neuronal and Glial Ca2+ Dynamics from 

Large-Scale Two-photon Imaging Data. 

(A) Contours of seven spatial filters corresponding to Purkinje cell dendrites identified by 

automated cell sorting, as well as two independent component characteristic of the activity of 

Bergmann glial cells. Contours are shown superimposed on an image of the background 

fluorescence of the imaged region. The spatial filters partially overlap, with many pixels 
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sharing signals from both neuronal and glial sources.  

(B) Neuronal (top) and glial (bottom) temporal signals corresponding to the spatial filters of 

(A) demonstrate that ICA successfully suppresses crosstalk between the signals of nearby, 

intermingled cells.  

(C)  Comparison of extracellular single unit electrical recording from a Purkinje cell (black) 

with a signal extracted by cell sorting on imaging data recorded simultaneously (red). 

Asterisks indicate complex spikes identified by waveform based spike sorting. 

(D) Contours of 102 spatial filters corresponding to Purkinje cell dendrites, as identified by 

automated cell sorting. Data were recorded in the superficial molecularl layer of an alert, 

restrained mouse. 

(E) Example time courses of 16 independent component signals from a subset of the 

components within the outlined region in (A) containing cells 22-43. Tick marks represent the 

estimated neuronal spike trains. Each spike was identified following a temporal deconvolution 

to correct for the dye’s Ca2+ binding kinetics as the occurrence of a positive-going threshold 

crossing within the activity traces.   
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Figure 6. Ca2+-Spiking in Purkinje Cells of the Cerebellar Vermis Depends on 

Behavioral State. 

(A) Average Ca2+ spike rate in Purkinje cell dendrites (red; median ± s.d.) as a function of 

physiological condition. Left, isoflurane anesthetized. Center, alert but resting. Right shaded 

period, actively moving. The black trace shows the mouse's running speed on the ball. 

(B) Ca2+ spike rasters for all 42 cells identified within the field of view. Note that under 

isoflurane anesthesia only a subset of Purkinje cell dendrites shows Ca2+ spiking. 

(C) Cumulative distribution of the spike rates across isoflurane anesthetized (dashed), alert but 

resting (solid) and actively moving (dotted) conditions. 

(D) Comparison showing each cell’s spike rate during movement (solid squares) or during 

isoflurane anesthesia (open circles) on the ordinate, plotted against resting spike rate on the 

abscissa. The diagonal line delineates equal spike rates under both conditions. As also 

apparent in (C), spike rates are generally higher in awake than in isoflurane anesthetized 

animals, and increase further during active locomotion. 
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Figure 7.  Cerebellar Microzones Exhibit Changes in Correlated Activity but Stable 

Anatomical Organization Across Different Behavioral States. 

(A) Matrices showing the correlation coefficient of spike trains recorded from each pair of 

cells within a population of 41 Purkinje cell dendritic trees. Cells are arranged by location 

along the medio-lateral dimension. Correlation matrices are computed separately for three 

physiological conditions. Red and blue outlines indicate local microzones identified by a 

clustering analysis of the correlation coefficients obtained during locomotion. 

(B) Correlation coefficients for cell pairs within the two microzones (blue and red) marked in 

panel A and in different (black) micro-zones as a function of their medio-lateral separation for 

each behavioral state. 

(C) Outlines of Purkinje cell dendrites identified by automated cell sorting in five mice. 

Colors show that the microzones identified through the cluster analysis respect the medio-

lateral ordering of cells and have sharp boundaries. The example of panels A and B is shown 

at far right. 

(D) Schematic diagrams of microzone structure for the same five mice as in C, comparing 
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periods of active locomotion (top) to those when the animal was awake but resting (bottom). 

The diagrams are based on the results of automated cell sorting and cluster analysis as shown 

in C, and reveal the stable anatomical organization of microzones across both behavioral 

states. 

 

Figure 8. Simultaneous Ca2+ Imaging and Extracellular Recordings Quantify 

Discriminability of Complex Spike Trains. 

(A) Cumulative distribution functions for the deconvolved fluorescence signal (normalized to 

unit variance) during all movie time frames coinciding with an electrically recorded complex 

spike (red) or during a background frame when no spike was present (blue). The detection 

threshold sets a particular probability of false positive errors and corresponding probability of 
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correctly identifying true spikes. 

(B) Receiver operating characteristic (ROC) analysis of the discriminability of complex spikes 

using independent component time courses (top) or signals resulting from image segmentation 

(bottom). Each curve illustrates the tradeoff between false positives and true spike detection 

for one of the cells studied by simultaneous electrical and optical recording. Different mice are 

indicated by the colors. 

(C`) The same data as in (F) are displayed in terms of the rate (events per s) of false positive 

and false negative detection. The lower rate of complex spikes in one experiment (blue curves) 

improved discriminability in that subject. 

 

Figure 9. Image Segmentation Improves Extraction of Signals from Correlated Cells. 

(A) An example of a spatial filter derived by ICA applied to an experimental data set. This 

component contains two well-separated groups of pixels that likely derive from dendrites of 

distinct cells. 

(B) The first stage of segmentation smoothes the spatial filter by convolving with a Gaussian 

blurring function, then applies a threshold to create a binary mask showing regions 

contributing strongly to the signal. Each contiguous image segment is assigned to a new filter 

(red and blue regions). 

(C) New spatial filters are created from the independent component by setting all pixel 

weights to zero except for those within one of the image segments. These pixels are assigned 

the same weight they had in the original ICA spatial filter. 

(D) By applying the segmented spatial filters to the movie data, the ICA time course (black) is 

broken down into distinct contributions from each cell (red and blue). Segmentation reveals 

that the activity of the two cells is strongly correlated, as expected for cells that are grouped 

together by ICA. In this case the image segment spike trains are identical except for one spike 
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(asterisk). 

SUPPLEMENTAL EXPERIMENTAL PROCEDURES 

Analysis Software 

Data analysis was performed using custom software written in MATLAB or using 

ImageJ plugins. Some routines were modified from the publicly available FastICA package 

[286]. 

Data Analysis Procedures 

Image Registration and Normalization 

We first corrected any lateral movement artifact within each movie frame, as assessed 

relative to a reference frame, by using the image registration algorithm implemented in the 

ImageJ plugin TurboReg [313]. We cropped the movies to exclude any pixels that moved 

outside the field of view at any time during the recording. The resulting usable field of view 

was typically 1-14 pixels smaller in each spatial dimension than the original movie. We then 

normalized the signal in each pixel by dividing by its mean value over all movie time frames 

and subtracting 1. We next subtracted from each time frame the mean fluorescence averaged 

over all pixels. In cases when we compared data from the same animal and brain area under 

different physiological conditions (e.g. anesthetized versus awake), we spatially aligned the 

movies to a common reference frame, usually the first frame of the anesthetized recording. 

Dimensional Reduction 

We used principal component analysis (PCA) to reduce the dimensionality of the data 

and remove much of the noise that in each pixel causes intensity fluctuations uncorrelated to 

signals in other pixels [283]. Each movie was represented as a matrix, M , of size N
x
!N

t
,  

where N
x

 is the total number of pixels and N
t
 is the total number of time frames. The entries, 

M
xt

, contain the normalized fluorescence intensity in pixel x at time t. By using PCA we 

reduced the data to a lower-dimensional, approximate representation in terms of a set of K 

(where K <min(N
x
,N

t
) ) principal components (PCs). In practice, K ranged from 40 to 120 

and was chosen separately for each data set (see below). Each PC comprises a spatial filter and 
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a signal time course. The PC spatial filters, U
k

, can be arranged in a N
x
!K  matrix with 

orthogonal columns, which we denote U. The PC time courses, V
k

, similarly define a N
t
!K  

matrix with orthogonal columns, which we denote V. After dimensional reduction, the new 

data representation approximates the original as a linear combination of the PCs, 

M
xt
!M

xt
" S

kk
U

kx
V
kt
= USV

T#$ %&
xt

k

' , 

where S is a K !K  diagonal matrix whose k’th diagonal entry squared, S
k

2 , is the variance of 

the data after projecting along the k’th PC. PCA is defined by choosing the matrices, U, V and 

S, that minimize the mean square difference between the exact and approximate descriptions 

of the data, 

!{U,S,V} = (M
xt
"M

xt
)
2

x,t

# , {U,S,V} = argmax! . 

We solved this optimization problem by computing the N
t
!N

t
 temporal covariance 

matrix, C =M
T
M . (Recall that the mean time course was previously subtracted from the 

data). The PC time courses, {V
k
} , are the K eigenvectors of C corresponding to the K largest 

eigenvalues, denoted S
k

2 . In practice we sometimes excluded some of the PCs with the largest 

eigenvalues, sacrificing some of the accuracy of the reduced description of the data for the 

sake of rejecting some high-variance noise sources. We thus typically retained all components 

with index k ! [Klow ,Khigh ] , so that the dimensionality of the reduced data was 

K = Khigh !Klow +1 . Since we were only interested in the reduced data set, we needed to 

compute at least ~ Khigh  eigenvectors and eigenvalues, not the full set of T  components. We 

usually computed 200 PCs for all data sets in a batch pre-processing step, and then chose the 

two numbers {Klow ,Khigh}  for each data set in a subsequent semi-automated fashion (see 

below). Once we determined V and S in this way, we computed U using: U =MVS
!1 . 

This procedure for PCA, in which we computed the temporal rather than the spatial 

covariance matrix, allowed us to analyze efficiently data sets with a very large number of 

pixels. This was because C and U were computed by summing over all movie pixels, which 

was performed by loading the data from only a small number of movie pixels at each stage. 

There was therefore no need to store the entire data matrix, M, in memory at any time. The 
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limiting resource for this procedure is the amount of memory required to store the matrix C, 

which scales as N
t

2 . 

An important step in performing PCA is the choice of the two values, {Khigh ,Klow} , 

that specify the range of PCs retained in the reduced data set. To set these parameters we 

calculated the set of variances, {S
k

2
} , of the data principal components. We used the analytic 

formula for singular values of a Gaussian random matrix to find a reference set of variances 

for a movie of the same dimensions containing independent, Gaussian distributed random 

noise in each pixel and time frame [284]. By choosing the power of the noise in the reference 

movie so that the highest-order principal component variances match those of the data, we 

could compare its variance spectrum with the data to determine the data principal components 

whose variances were well above the noise floor. We chose the cutoff, Khigh , to be roughly the 

point at which the slopes of the signal and noise spectra converged. All data dimensions 

whose covariance rank was greater than Khigh  were eliminated from further analysis. To 

reduce artifacts due to motion and galvanometer jitter, which may have large variance, we 

visually examined the spatial filters (the rows of U, reshaped and displayed as 2D images) and 

chose a lower cutoff, K
low

, to eliminate modes with large variance that did not appear to 

contain biological signals. In practice, we usually set K
low

!15 . With experience, setting 

{Khigh ,Klow} can be done quickly and requires only a few minutes. 

Following dimensional reduction, all subsequent analysis made use of a normalized, 

or whitened, representation of the data with equal covariance along every PC: M
white

=UV
T  

[286]. Working with this representation simplified the process of extracting cellular signals as 

orthogonal transformations of the PCs. 

Cell Sorting by Independent Component Analysis (ICA) 

The problem of cell sorting, as schematized in Figure 1A, can be described by the 

generative model for signal mixtures that is at the heart of the theoretical framework of ICA. 

According to this model, independent biological signals mix linearly to form the data matrix: 

Mwhite[ ]
x.t
= s j (x)aj (t)

j

! .  

Here the fluorescence at pixel x at time t is determined by the instantaneous 
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amplitudes of the independent signal time courses, aj (t) , and by a set of corresponding spatial 

filters, s j (x) . In temporal ICA, s j (x)  is regarded as a matrix of mixing coefficients for the 

independent signal sources, aj (t) , that combine to form the mixtures observed at each pixel. 

In spatial ICA, these roles are reversed, with the aj (t)  serving as mixing coefficients for the 

spatial sources defined by s j (x) . 

ICA seeks to estimate aj (t)  and s j (x)  by finding an unmixing matrix, C:  

â j (t) = C jkVtk

k

! ,

ŝ j (x) = C jkUxk ,

k

!
 

where the circumflex indicates the estimate based on the movie data. We find the 

unmixing matrix by maximizing statistical sparseness, as quantified by the skewness of the 

spatial and temporal signals. The skewness of a random variable, z , is related to its third order 

statistical moment: 

 
Skew[z]= E[(z !E[z])

3
] / E[(z !E[z])

2
]
3/2

= E[ !z
3
]  

where E  denotes an expectation value over the set of observations of z , and 

 
!z = (z !E[z]) /"

z
 has been centered and normalized to have zero mean and unit variance. We 

performed ICA using the FastICA algorithm [286], which uses an approximation of the 

Newton-Raphson method to maximize the skewness objective function [292]. This objective 

function for joint analysis of a set of signals, {z( j )} , is the total skewness, Skew[z
( j )
]

j
! . The 

algorithm starts from a random initial guess for the mixing matrix and iteratively updates it to 

bring it closer to the maximum, by using an estimate of the local slope and curvature of the 

objective function at each iteration. Assuming the data have been whitened during pre-

processing (see above) and the mean of each signal has been subtracted, the rule for updating 

C  is 

Cij

(n+1)
= (zk

(i )
)
2
yk
( j )

k
!  

where C(n)  is the estimated mixing matrix after the n’th iteration, y( j )  is the mixed signal 

from PCA (e.g. y( j ) =Vj  or y( j ) =Uj ; see below), and z(i ) = Ci, j

(n)
y
( j )

j
!  is the unmixed signal 

whose skewness is to be maximized. After each update, the unmixing matrix is orthogonalized 
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via C = (CC
T
)
!1/2
C , which ensures that the independent components will be uncorrelated with 

each other [292]. To complete the definition of the ICA algorithm used for cell sorting, we 

must specify the identity of the unmixed signals, {y( j )} , which may include the principal 

component spatial filters and/or time courses. 

In its most basic form, ICA can be applied to cell sorting by using either spatial or 

temporal statistics to assess sparseness. Temporal ICA relies on the assumption that the 

signals of interest are temporally sparse, i.e. with each cell being activated in a relatively small 

proportion of the movie frames and with a skewed amplitude distribution. In this case, the 

mixed signals are the principal component time courses, y( j ) =Vj , and the objective function 

is Ftime = Skew[â j ]
j

! , where the expectation value is an average over movie time frames. 

Imaging data from populations of individual cells are generally also sparse in the spatial 

domain, with each cell contributing to only a small fraction of the pixels in the field of view. 

FastICA can exploit this spatial information simply by reversing the roles of space and time in 

the original data matrix, leading to spatial ICA and an objective function, 

Fspace = Skew[ ŝ j ]
j

! . Here, y( j ) =Uj and the expectation values are averages over all pixels. 

Cellular signals in our data sets had typically greater spatial than temporal skewness 

(Figure 2E). Each Purkinje cell dendritic tree occupied 1,760 ± 589 µm2 (mean ± s.d.; n=199 

dendrites), or ~3% of the area of our typical 60,000 µm2 field of view. By comparison, the 

Purkinje cell Ca2+ spike rate was 0.76 ± 0.15 Hz and each spike lasted 182 ± 92 ms (n=155 

spikes), meaning that in ~14% of time frames each cell was active. Consistent with this 

disparity, spatial ICA typically achieved higher fidelity signal extractions from our simulated 

data than temporal ICA (Figure 3F) and also extracted more components from experimental 

data that resembled cellular signals. Note, however, that sparse activation in time is not the 

only means of achieving a highly skewed distribution of signal amplitudes. For example, cells 

with high rates of activity that are strongly modulated in time, such as during bursts, will also 

exhibit skewed distributions of signal amplitudes.  

Spatio-Temporal ICA 

To exploit sparseness in both the spatial and temporal domains, we used spatio-

temporal ICA [43]. In this case, a set of signals formed by concatenating time courses and 
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spatial filters from each principal component plays the role of {y( j )} . We used a single 

parameter, µ , where 1 ≥ µ  ≥ 0, to control the relative contribution of spatial and temporal 

information: 

yi
(k )

=
µUki , i ! Nx

(1"µ)Vki , Nx < i ! (Nx +Nt )

#
$
%

&%
.  

Note that E[y(k ) ]= µ Ukx +
x

! (1"µ) Vkt
t

!( ) (Nx +Nt ) = 0 . The objective function is therefore 

Fµ[C]= Skew[y
( j )
]

j
! " µ3

!Skew[ ŝ j ]+ (1#µ)
3
!Skew[â j ]

j
! , which comprises both the spatial 

and temporal skewness of the extracted signals. 

Spatio-temporal ICA may be viewed as a version of temporal ICA that combines a 

temporal skewness objective with the a priori assumption, weighted by a factor µ3
/ (1!µ)3 , 

that the spatial filters should be sparse [315]. The algorithm treats space and time 

symmetrically, so it can be viewed alternatively as maximizing spatial skewness under the 

constraint that the signal time courses should also be skewed; in this case, the prior weight is 

(1!µ)3 /µ3 . Nonetheless, there remains a need for further theoretical investigation of the 

statistical interpretation of spatio-temporal ICA in terms of a generative model with prior 

assumptions on the filter weights [43, 315, 316].  

Temporal Deconvolution and Spike Detection 

We estimated the stereotyped waveform of a neuronal Ca2+ spike by averaging the 

time courses of spikes that were simultaneously recorded optically and by extracellular single 

unit electrical recording in anesthetized mice. We fit the average time course with an 

exponentially decaying function of time constant  τ = 182 ± 97 ms (mean ± s.d., n=155 spikes 

in 4 experiments). Because this time course was brief, we could improve the detection of Ca2+ 

transients in neuronal signals by high-pass filtering the signals to first remove slow variations 

due to sources such as photobleaching. We filtered signals by first estimating the slow 

variations using a moving average with 2 s window size, then subtracting this smooth signal 

from the original. This approach was not used with glial Ca2+ signals, which evolve over 

longer time scales of several seconds. 

For neuronal signals we corrected for the slow decay of fluorescence by using 
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temporal deconvolution [224]. The deconvolved signal was defined by 

ŝ
deconv

(t) = ŝ(t) / !
deconv

+[ ŝ(t + dt)" ŝ(t)] / dt , where  τdeconv = 150 ms and dt  is the time between 

movie frames. The deconvolved signal for Purkinje cell Ca2+ traces contained one large spike 

corresponding to each action potential, followed by an immediate return to baseline in the next 

time frame. We defined spike times as local maxima in the deconvolved signal that exceeded a 

threshold defined as 2 standard deviations above the mean signal. Applying this spike 

detection procedure in our awake data sets, we found that the average time constant of decay 

following each detected spike was ~124 ± 63 ms (mean ± s.d., n=150 cells in 5 mice), within 

the range observed in our anesthetized recordings with paired electrophysiology. 

Image Segmentation 

Spatio-temporal ICA sometimes identified individual spatial filters that appeared to 

comprise multiple, spatially separated Purkinje cells. We therefore segmented these filters into 

distinct sub-components, each representing an individual Purkinje cell. To do this, the original 

filter was smoothed by a convolution with a Gaussian kernel of 1.5 pixels (2.9  µm) standard 

deviation. We next transformed the filter into a binary mask by applying a threshold 1.5 

standard deviations above the mean intensity of all pixels. We used the MATLAB function 

bwlabel, which gives distinct labels to all spatially connected components within the binary 

mask [317]. In some cases we identified small image segments that were cut off by the edges 

of the field of view, or small pieces of dendrites separated from the main processes by a blood 

vessel. In such cases the signal amplitude relative to background fluctuations was often 

smaller than for dendritic segments with larger area, due to the smaller number of photons 

contributing. To avoid excessively noisy signals, we excluded any image segments covering 

an area smaller than 50 pixels. (For comparison, Purkinje cell dendrites typically occupy 481 

± 161 pixels (mean ± s.d.) in our recordings). Finally, for each image segment we created a 

spatial filter filled by setting to zero the weights of all pixels outside of the connected region. 

The filter weights inside the connected region were equal to those of the corresponding pixels 

in the original filter. The result was a set of spatial filters that had non-overlapping support and 

retained the fine spatial structure of the original filter. 

Artificial Movie Data Sets for Validation of Cell Sorting Procedures 

We created artificial movies designed to mimic Ca2+-imaging data acquired in the 
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cerebellar molecular layer. The artificial data were constructed by simulating cellular signals 

with temporal dynamics and spatial characteristics, such as cell sizes, shape, and density, 

conforming to our expectations of intracellular Ca2+ signals from Purkinje cell dendrites and 

Bergmann glial processes. Each movie covered a square field of view either 50 × 50 or 64 × 

64 pixels in size. The number of Purkinje cells and total rate of Bergmann glial Ca2+ transients 

increased in proportion to the field of view area, so as to maintain a constant density of ~1025 

Purkinje cells per mm2 and 13 glial Ca2+ transients per mm2 per second. This density of 

Purkinje cells was somewhat higher than the density of cellular signals we extracted from 

experimental data sets (663 ± 45 per mm2), reflecting the presence of blood vessels occluding 

parts of the field of view in the experimental data as well as the possibility that our analysis 

missed some of the cells that were present.  

We distributed the centroids of the Purkinje cell dendritic trees, {xk , yk} , randomly 

within the middle 64% of the field of view; we chose not to include cells in the periphery of 

the field of view so that all of the simulated cells would cover roughly the same number of 

pixels. We modeled Purkinje cell signals by assuming that the pixels near the centroid of the 

dendrite contribute the most weight to the signal. The relative weight of each pixel in a cell’s 

spatial filter was given by an elongated Gaussian function: 

Uk (x, y)! exp["(x " xk )
2
/ 2# x

2
" (y" yk )

2
/ 2# y

2
]  

where σx = 75 µm, σy = 2.5 µm defined the major and minor axis standard deviations. We 

imposed a sharp spatial cutoff, setting Uk to zero for all pixels whose weight would have been 

< 10-4 times that of the center pixel. These simulated Purkinje cell dendrite shapes were 

roughly consistent with the total length (90 ± 40 µm) and breadth (7.0 ± 2.3 µm) of Purkinje 

cell dendrite image segments observed in our experimental data. Bergmann glial spatial filters 

were defined identically but had isotropic width parameters, ! x
=!

y
= 40 µm. We rotated all 

spatial filters relative to the square borders of the field of view by 20°. Finally, we normalized 

each spatial filter so that Uk (x, y) =1
x,y

! . 

The time courses of Ca2+-dependent fluorescent signals were modeled by first 

generating underlying spike trains by using independent but biased random coin flips for each 

Purkinje cell and for each time frame. The probability of a spike in each time frame was 

chosen to give a mean spike rate of 0.6 Hz, within the range reported for non-anesthetized 
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mice [23, 221, 290]. We convolved each cell’s spike train, represented as a vector of 1’s and 

0’s, with an exponentially decaying function with time constant 240 ms to account for the 

slow decline of Ca2+ fluorescence following a spike. 

For simplicity and to avoid multiple simultaneous glial Ca2+ transients, which we 

rarely observed in the experimental data, we chose onset times for glial events, t
i
, that were 

distributed at regularly spaced intervals over the duration of the simulated movies. The time 

course of each glial Ca2+ transient was modeled by the function (t ! t
i
)e

!(t!t
i
)/" , where  τ=1.6 s. 

Each artificial movie was 100 s in duration and the frame rate was 10 Hz. Cellular 

signals were added to a static fluorescence background that included bright circular structures 

resembling the somata of molecular layer interneurons and elongated dark regions resembling 

blood vessels. These time-dependent and static background signals defined a noiseless data 

set. 

We created noisy movie data with a defined signal to noise ratio, S , by multiplying 

the noiseless movie data in each pixel, x , and each time frame, t , by an independent random 

number, !
xt

 chosen from a distribution with mean S2  and variance S2 . This noise model 

approximates the statistical distribution of signals we would expect to observe given an 

average of ~ S2  photons collected per pixel per time frame using a shot-noise limited 

microscope under conditions in which the contrast is relatively uniform, such as with OGB-1-

AM staining. For S < 5 , we used Poisson statistics, so that !
x,t

 is a non-negative integer 

chosen according to the distribution  

Pr[!
xt
]= e

"S
2 (S

2
)
!
xt

!
xt
!

. 

For S ! 5 , to improve computational efficiency we approximated Poisson statistics by 

a Gaussian distribution, Pr[!
xt
]= e

"(!
xt
"S

2
)
2
/(2S

2
)
/ 2#S

2 . Both noise distributions are chosen 

such that the mean-to-standard deviation ratio is S . To avoid unphysical fluorescence values 

when using the Gaussian approximation, we set any negative values of !
xt

 to 0. 

When analyzing artificial data sets we always chose the number of retained PCs, K, to 

be equal to the total number of neuronal and glial signals. We set Klow =1,Khigh = K . We 

used µ=0.5 when performing spatio-temporal ICA since this value was in the range for which 

cell sorting performed optimally for artificial data (Fig. 3). We noticed that the optimal value 
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of µ for each data set depended on factors such as the average spike rate of cells, the imaging 

frame rate, and the numbers of pixels and time frames. Our experimental data had a larger 

ratio of pixels to time frames than our artificial data sets, hence our choice of µ=0.1-0.2 for 

analyzing the experimental data. For computational efficiency we limited the number of 

iterations of the gradient descent algorithm to 100. 

Definitions of Signal Fidelity and Cross Talk 

To quantify the performance of automated cell sorting, we compared the signals 

extracted from our artificial data sets to the underlying cellular signals used to generate the 

artificial movie. We computed the correlation coefficient between each true signal, a
k
(t) , and 

each extracted signal trace, â j (t) :   

ccj ,k =
E[â jak ]!E[â j ]E[ak ]

E[â
2

j ]!E[â j ]
2( )
1/2

E[a
2

k ]!E[ak ]
2( )
1/2

 

where E  denotes averaging over all time frames. We then paired each extracted signal with 

one of the true signals in an iterative fashion. First, we identified the pair of signals with the 

largest correlation coefficient and assigned these two signals to each other. We then removed 

these two signals from the set of available pairs and repeated the procedure with the remaining 

true and extracted signals. We proceeded in this way until each extracted signal was assigned 

to one true signal. We defined the fidelity for each extracted signal as the cross correlation 

with the true signal with which it was paired in this process. The correlation coefficients 

between all the other true signals and the extracted signal yielded the cross talk. Our overall 

measure of cross talk is the median of the K largest such correlation coefficients, where K is 

the total number of extracted signals. 

Comparison with Standard ROI Analysis 

We implemented a form of ROI analysis that represents a best-case scenario for the 

results a human data analyst could achieve with an ROI approach. The underlying assumption 

is that for each cell the analyst possesses several examples of movie time frames that she 

knows to contain examples of activations of that cell, caused by spikes in neurons or Ca2+ 

transients in glial processes. In practice, uncertainty and error in the estimation of these 

exemplary spike times will degrade the performance of an ROI cell sorting procedure 
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compared with the idealized version we studied. Thus, our results likely understate the 

superiority of ICA over ROI analysis. 

We defined ROIs for each Purkinje dendrite by computing the average of the 

simulated fluorescence in each pixel over all movie time frames coinciding with the 

occurrences of an action potential in that cell. This spike-triggered average generally yielded a 

filter with high amplitudes in the pixels contained within the cell, and low amplitudes in pixels 

reflecting only background fluctuations in fluorescence or signals from other, uncorrelated 

cells. We used a similar approach to define an ROI for each glial Ca2+ transient. Each glial 

signal contained only one fluorescence transient during the simulated movie, but the transient 

persisted ~10 times longer than neuronal action potential transients. We therefore defined glial 

ROIs by averaging fluorescence during a period of 500 ms duration (5 movie time frames) 

around the peak of the transient. 

For both neuronal and glial ROIs, we smoothed the triggered average image by 

convolving with a Gaussian blurring function of 2 pixels standard deviation. We then applied 

a threshold, defined as 0.8 times the filter’s maximum amplitude, to generate a binary mask. 

This mask defined the final ROI (Figure 4B). To compute the signal corresponding to each 

ROI, we averaged the fluorescence in all pixels within the corresponding binary mask for each 

time frame. 

Animals and Animal Surgery 

Mouse surgeries were performed under isoflurane anesthesia (1.5–2.5%, mixed with 

2.0 L/min O2). Body temperature was monitored with a rectal thermistor placed underneath 

the animal’s belly and maintained at 36-37°C using a heating blanket. We assessed the depth 

of anesthesia by monitoring pinch withdrawal, eyelid and corneal reflexes, breathing rate, and 

vibrissae movements.  

Our experiments involved two surgical procedures. Several days prior to recordings 

the animal’s skull was exposed and cleaned above neocortex and cerebellum. A custom metal 

plate allowing cranial access and repeated head-fixation was attached to the skull with dental 

acrylic cement (Coltene/Whaledent, H00335). On the recording day, a craniotomy (1-4 mm in 

diameter) was opened (-6.5 mm posterior to bregma; 0.5 mm lateral). Exposed tissue was 

irrigated with warm artificial cerebral spinal fluid (ACSF; 125 mM NaCl, 5 mM KCl, 10 mM 

D-Glucose, 10 mM HEPES, 2 mM CaCl2, 2 mM MgSO4; pH to 7.4 with NaOH). To dampen 
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heartbeat- and breathing-induced brain motion, the craniotomy was filled with agarose (1.5%; 

Type III-A, high EEO; Sigma) in ACSF and covered with a coverslip immobilized onto the 

head plate, creating an optical window for imaging. The dura was left intact for Ca2+-indicator 

injections, but removed immediately prior to agarose application.  

Fluorescence Labeling 

Targeted bulk-loading of cerebellar tissue with the fluorescent Ca2+-indicator Oregon 

green 488 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetate-1 acetoxymethyl (OGB-1-

AM; Molecular Probes) was performed as described [226] Nimmerjahn et al., 2004; [225]. 

The final concentration of OGB-1-AM and DMSO in our pipette solution was 500 µM and 2-

5%, respectively. To obtain a homogenous, widespread stain of the Purkinje cell and 

molecular layers we performed several pressure ejections (3-3.5 psi pressure) of 1-2 min 

duration using a picrospritzer (Picospritzer III, General Valve, Fairfield, NJ). Typically five 

injections were performed in a grid-like pattern with ~150-250 µm spacing. To counterstain 

Bergmann glia, the red fluorescent astrocyte marker sulforhodamine 101 (SR101; 200-250 µM 

in ACSF; Invitrogen) was generally added to the injection solution or applied topically (1-3 

min) [240]. 

Two-Photon Imaging in Behaving Mice 

After surgical implantation of a head-plate into the cranium and a recovery period of 

1-4 days, mice were habituated in 3-9 sessions (typically 1 session/day) to accept increasingly 

longer periods (15-90 min sessions; 1.5-7.5 h total habituation time) of head restraint while 

walking on a 11.9-cm-diameter exercise ball (Habitrail, model 62065) covered with copper 

mesh. The ball rotated on one axis, allowing the animal to stride forward or backward at 

liberty.  

We used a custom upright two-photon microscope equipped with an ultrashort-pulsed 

Ti:sapphire laser (Tsunami, Spectra-Physics), two fluorescence detection channels, and a 20× 

water-immersion objective (Olympus, 0.95 NA, XLUMPlanFl). To excite OGB-1-AM, the 

laser was tuned to 800 nm. For simultaneous excitation of OGB-1-AM and SR101 we used 

800-820 nm. Prior to Ca2+-imaging mice generally recovered from isoflurane for >60 min to 

minimize aftereffects of anesthesia. To minimize the possibility of photo-induced alterations 

in tissue physiology, the duration and average power of continuous illumination were <12 min 
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and <35 mW at a given brain location. 

We used MP-Scope data-acquisition software for laser-scanning microscopy [318], 

which uses a 5 MS/s data acquisition card (PCI-6110, National Instruments) for simultaneous 

acquisition and display of up to two imaging and two analog input channels. Images contained 

256 × 256 pixels (10.2–11.1 Hz frame rate) or 128 × 128 pixels (20.4 Hz).  

Behavioral Assessment 

Mouse behavior was recorded in Mini-DV format using a digital Camcorder (Sony 

DCR-VX2000). Rotational displacements of the exercise ball were monitored using a rotary 

encoder (US Digital, E7PD-720-118). 

Electrophysiology 

To record the electrophysiological complex spikes corresponding to optically detected 

Ca2+ spikes in Purkinje cell dendrites [23, 40, 46], we performed targeted extracellular single-

unit recordings in the cerebellar cortex of isoflurane anesthetized mice studied simultaneously 

by two-photon imaging as described above. Ca2+-transients in distal Purkinje cell dendrites 

were visualized using a 40× 0.8 NA water-immersion objective (Zeiss, Achroplan). 

Extracellular Purkinje cell activity was recorded using beveled borosilicate glass electrodes 

(A-M Systems, Inc.; OD, 1.0 mm; ID, 0.58 mm; internal solution, 2 M NaCl and in some 

cases 200-500 µM sulforhodamine 101; pipette resistance, 5-10 MΩ). Electrodes were 

positioned under visual control near OGB-1-AM labeled Purkinje cell somata. Purkinje cells 

were identified by the brief pause in simple spike activity following each complex spike. The 

raw electrode signal was amplified, filtered (A-M Systems, Model 1800 microelectrode AC 

amplifier; low cut-off, 300 Hz; high cut-off, 5 kHz), digitized (20 kHz) and stored on disk for 

off-line analysis. Two-photon imaging data of dendritic Ca2+ activity was recorded 

simultaneously (frame rate, 20.35 Hz) in superficial regions of the molecular layer (depth, 20-

50 µm) located directly above the microelectrode tip. The correspondence between dendritic 

Ca2+ spikes and electrophysiological complex spike activity was verified through a spike-

triggered average analysis written in Matlab, in agreement with prior combined optical and 

electrophysiological studies of Purkinje cells [23, 40]. 
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ROC Analysis 

Receiver operating characteristic (ROC) analysis characterizes the tradeoff between 

two competing objectives in the detection of spikes. On the one hand, the threshold for a 

spiking event should be set low enough so that most of the true spikes are correctly detected (a 

high hit rate). On the other hand, the threshold should be kept high enough so that very few 

spikes are reported at times when no spike actually occurred (low rate of false positives). The 

ROC curve plots the false positive rate versus the hit rate for a range of values of the spike 

threshold. The area under this curve is a measure of the spike discriminability and can be 

interpreted as the probability of correctly distinguishing a spike from a non-spike [296]. 

We wrote custom MATLAB routines to generate ROC curves for paired 

electrophysiological and two-photon imaging recordings, and to compute the ROC area. After 

extracting an estimate of each cellular signal by ICA cell sorting, we applied temporal 

deconvolution and used the resulting deconvolved signal for ROC analysis. 

Identification of Periods of Active Locomotion 

We used an optical encoder to record the mouse’s running speed on the exercise ball. 

The encoder was sufficiently sensitive to detect even 0.5 deg rotations of the exercise ball 

during periods when the mouse did not actively walk or run. We first smoothed the encoder 

signal by convolving with a Gaussian kernel of standard deviation 0.5 s. We defined the onset 

times of active movement as times at which the smoothed velocity signal surpassed a 

threshold of 2 mm/s. The offset times of the periods of movement were defined as when the 

speed fell below 1 mm/s. As a conservative measure, to avoid including any data from actively 

moving periods in the analysis of resting data, we padded the period of active movement with 

2 s before the onset and after the offset of each movement. This procedure allowed us to detect 

periods of continuous movement, which may include brief pauses lasting less than a few 

seconds. 

Detection of Cerebellar Microzones 

We partitioned all identified cells into disjoint microzones using k-means clustering 

[40, 314], implemented using the MATLAB function kmeans. We represented each spike train 

as a vector, with value 1 for time frames at which a spike was detected and 0 otherwise. The 

cross-correlation between spike trains provided the distance function that we used in the 
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clustering procedure [46]. We repeated k-means clustering for each data set 20 times with 

random initial cluster centroids, and chose the solution with the largest average cross-

correlation between each spike train and the centroid of its cluster. To assess the stability of 

microzones over time, we divided each recording lasting 7-10 minutes into 1-minute duration 

data subsets and repeated the clustering procedure for each subset. We also performed 

clustering separately on data recorded during rest and active locomotion.
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